scholarly journals DESIGN AND ANALYSIS OF T-STUB U-SLOT NOTCH BAND FREQUENCY RECONFIGURABLE ANTENNA USING PARAMETRIC ANALYSIS FOR WIRELESS COMMUNICATION APPLICATIONS

Author(s):  
B.Siva Prasad ◽  
P. Mallikarjuna Rao

The design and analysis of a T-Stub U-Slot Frequency Reconfigurable Notch band antenna is considered in the present work using Coplanar Waveguide feed network for an efficient power transfer to improve the bandwidth characteristics of the antenna. The designed antenna has a dimension of 24X21X1.6 mm with FR4 substrate having a permittivity of 4.4. The proposed antenna consists of a T-Stub and U-Slots which are used to enhance the performance characteristics of the antenna. The reconfigurability is achieved by placing PIN diodes at T-Stub and U-Slots of the antenna design. The designed antenna is more suitable for WLAN, Wi-Fi, LTE and Bluetooth applications. Simulation results are obtained using CST tool and the same are presented at the end.

2018 ◽  
Vol 7 (2.7) ◽  
pp. 127 ◽  
Author(s):  
A Vamseekrishna ◽  
B T P Madhav

A compact coplanar waveguide fed reconfigurable antenna with three notch bands are presented in this paper. Proposed antenna reconfigurability is acquired by placing bar6404 PIN diodes in the S-shaped ground plane in right to left mode and left to right mode. By switching the diode, reconfigurability achieved for three different operations. The substrate material for the proposed antenna is FR4 with dielectric constant 4.4 and loss tangent 0.02. The overall dimension of the reconfigurable antenna is around 30×26mm2. It is being observed in this work for the cause of each individual slot on notch band characteristics. The measured gain for the designed reconfigurable antenna is quite stable at operating frequencies except notch bands. The proposed antenna is suitable for practical wideband applications with notching.


Author(s):  
I.D. Saiful Bahri ◽  
Z. Zakaria ◽  
N. A. Shairi ◽  
N. Edward

<span>This paper proposed an UWB antenna with triple reconfigurable notch filters. By presenting there U-shaped coppers in the design, the potential triple interference in UWB applications can be rejected. Six PIN diodes are putted on the coppers to represent the OFF and ON tunable status in order to add reconfigurable characteristics to the UWB antenna. By using this ON and OFF tunable method, the current distribution of the proposed design changes and enables the antenna to have eight operation modes. The results prove that the proposed design can operate over the entire UWB frequency range (3.1 GHz to 10.6 GHz) and can filter out the target signals from the WLAN upper band (5.725 to 5.825 GHz), WLAN lower band (5.15 to 5.35 GHz) and X band frequency system (7.9 to 8.4 GHz) in one of the tunable configurations.</span>


With the increase in wireless applications, there is a need for compact antennas that adapt their behavior with changing system requirements or environmental conditions. Here adapt implies the antenna should be able to alter operating frequencies, impedance bandwidths, polarizations, radiation patterns. These all features are provided by the “Reconfigurable antenna”. The important feature of reconfigurable antenna is that, they provide the same throughput as a multi-antenna system. A compact frequency reconfigurable antenna is designed with the aid of Ansoft HFSS that provides multiple frequency bands. This is achieved by using electrical switches such as PIN diodes. Depending on state of switches different operating frequencies are obtained. The switches placed on the antenna elements are powered wirelessly by the antenna itself. The design, geometries and simulation results of a frequency reconfigurable antenna are presented in this report. Further advancements are to be done for this structure to achieve polarization and radiation pattern re-configurability.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 366
Author(s):  
B Siva Prasad ◽  
P Mallikarjuna Rao ◽  
B T P Madhav

A coplanar wave guide fed fork shaped antenna is designed with reconfigurability for switching between the application bands of LTE, Wi-Fi and WLAN. A novel closed hut shaped ground plane structure is used in the construction of the antenna model for good impedance matching with the feed line. The basic structure of the antenna model is working in the UWB range from 3.1 to 10.6 GHz. The adjacent strips of the monopole consisting of the slots for the placement of PIN diodes. The switching operation of the diodes providing frequency reconfigurability nature in the antenna between LTE (2.1-2.2 GHz), Wi-Fi (2.4 to 2.7 GHz) and WLAN (5.6-5.8 GHz) bands. Antenna is providing peak realized gain of 4.5 dB and efficiency more than 70% in the operating bands. The prototyped antenna is providing excellent measurement results in correlation with simulation results obtained from CST Microwave Studio.


Reconfigurable antennas wires are equipped for working in various groups by recurrence re-configurability or polarization re-configurability. A recurrence reconfigurable fix reception apparatus with two rectangular metallic rings is utilized by changing the transmitting surface of antenna. The switches are presented at the focal point of the essential fix. This antenna can work in 1.8 GHz, 2.2 GHz and 2.7GHz recurrence groups, when the switches are turned ON and OFF. The emanating surface zone increments when the switches are turned ON and thus change the working recurrence of antenna. The switches are displayed for equal circuit of PIN diodes. In this paper the radio wire can work from 1.8GHz to 2.7 GHz. The antenna is created and reproduced in HFSS Software.


2020 ◽  
Vol 35 (9) ◽  
pp. 1030-1036
Author(s):  
Pronami Bora ◽  
Pokkunuri Pardhasaradhi ◽  
Boddapati Madhav

A non-planar electromagnetic band gap (EBG) structured antenna is proposed in this paper for wireless communication applications. The proposed design consists of coplanar waveguide (CPW) fed square patch antenna embedded with triangular EBG backing on FR-4 substrate material for 2.4 GHz (Wi-Fi, LTE) and 5.2 GHz (WLAN) applications. Gain is improved from 2.8 dB to 13.9 dB by adding EBG structure in the proposed antenna and the parametric analysis is done for optimizing the antenna performance characteristics. The proposed antenna provides a maximum efficiency of 82.5% in the resonating frequencies. The prototyped antenna is having good correlation with the simulation results obtained from Finite Element Method (FEM) based Anyss-HFSS. High Frequency Structure Simulator is used to analyze the antenna parameters and the simulated and measured results are correlating well with each other with a slight change in frequencies.


A circular monopole antenna with coplanar waveguide feeding is designed for wideband applications. Different electromagnetic bandgap structures are placed beneath the antenna ground plane to improve the gain and the radiation efficiency. The depicted model occupies the dimension of 50X50X1.60 mm on FR4 substrate with dielectric constant of 4.3. Aerial operating in the dual band of 1.5-3.6 GHz (GPS, LTE, Bluetooth and Wi-Fi applications) and 4.8-15 GHz (WLAN, X-Band and Satellite communication applications) with bandwidth of 2.10 and 10.20 GHz respectively. The final novel antenna design provides good correlation with simulation results.


2021 ◽  
Vol 11 (4) ◽  
pp. 1635
Author(s):  
Adnan Ghaffar ◽  
Xue Jun Li ◽  
Wahaj Abbas Awan ◽  
Syeda Iffat Naqvi ◽  
Niamat Hussain ◽  
...  

This paper presents the design and realization of a compact size multimode frequency reconfigurable antenna. The antenna consists of a triangular-shaped monopole radiator, originally inspired from a rectangular monopole antenna. Slots were utilized to notch the desired frequency while the PIN diodes were utilized to achieve frequency reconfigurability. The antenna can operate in wideband, dual-band, or tri-band mode depending upon the state of the diodes. To validate the simulation results, a prototype was fabricated, and various performance parameters were measured and compared with simulated results. The strong agreement between simulated and measured results along with superior performance as compared to existing works in the literature makes the proposed antenna a strong candidate for ISM, 5G-sub-6 GHz, and S-band applications.


Sign in / Sign up

Export Citation Format

Share Document