scholarly journals To Go or Not to Go: Exploring brain activation during response inhibition reading tasks

Spectrum ◽  
2019 ◽  
Author(s):  
Julia Craig ◽  
Amberley V. Ostevik ◽  
Lindsey Westover ◽  
Bill Hodgetts ◽  
Jacqueline Cummine

Objective: Response inhibition is an understudied component of reading that aids in the selection of appropriate responses amidst complicated tasks. Our objective was to explore the contribution of brain regions associated with response inhibition processing in reading tasks that vary in difficulty of response inhibition. Method: Participants (N = 15) completed two go/no-go reading tasks while in a functional magnetic resonance imaging (fMRI) scanner, with the instructions to “name aloud the letter strings that spell a real word.” For the minimal response inhibition condition, the foils, which are stimuli that should not be repsonded to, were nonwords with unfamiliar spelling and sound (e.g., “bink”). For the maximal response inhibition condition, the foils were pseudohomophones with unfamiliar spelling but familiar sound (e.g., “pynt”). The following brain regions associated with decision-making processes were analyzed: the anterior cingulate cortex (ACC), the dorsomedial prefrontal cortex (DMPFC), the inferior frontal gyrus (IFG), the middle temporal gyrus (MTG), the middle occipital gyrus (MOG), and the posterior insula (PI). Results: Significant differences in activation within the nonword task were found for the DMPFC and the PI (the ACC approached significance). Significant differences in activation within the pseudohomophone task were found for the ACC, the MTG, and the PI. The IFG was found to be greatly activated for all words that had familiar phonemes (sounds). The MOG was found to be activated across all tasks. Conclusion: We provide evidence for differential response inhibition processing in the decision-making network during reading tasks. This work is a necessary step in better understanding response inhibition ability for individuals with and without reading impairments.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Christopher N. Cascio ◽  
Nina Lauharatanahirun ◽  
Gwendolyn M. Lawson ◽  
Martha J. Farah ◽  
Emily B. Falk

AbstractResponse inhibition and socioeconomic status (SES) are critical predictors of many important outcomes, including educational attainment and health. The current study extends our understanding of SES and cognition by examining brain activity associated with response inhibition, during the key developmental period of adolescence. Adolescent males (N = 81), aged 16–17, completed a response inhibition task while undergoing fMRI brain imaging and reported on their parents’ education, one component of socioeconomic status. A region of interest analysis showed that parental education was associated with brain activation differences in the classic response inhibition network (right inferior frontal gyrus + subthalamic nucleus + globus pallidus) despite the absence of consistent parental education-performance effects. Further, although activity in our main regions of interest was not associated with performance differences, several regions that were associated with better inhibitory performance (ventromedial prefrontal cortex, middle frontal gyrus, middle temporal gyrus, amygdala/hippocampus) also differed in their levels of activation according to parental education. Taken together, these results suggest that individuals from households with higher versus lower parental education engage key brain regions involved in response inhibition to differing degrees, though these differences may not translate into performance differences.


2017 ◽  
Vol 48 (9) ◽  
pp. 1464-1473 ◽  
Author(s):  
A. Schmidt ◽  
F. Müller ◽  
C. Lenz ◽  
P. C. Dolder ◽  
Y. Schmid ◽  
...  

AbstractBackgroundRecent evidence shows that the serotonin 2A receptor (5-hydroxytryptamine2A receptor, 5-HT2AR) is critically involved in the formation of visual hallucinations and cognitive impairments in lysergic acid diethylamide (LSD)-induced states and neuropsychiatric diseases. However, the interaction between 5-HT2AR activation, cognitive impairments and visual hallucinations is still poorly understood. This study explored the effect of 5-HT2AR activation on response inhibition neural networks in healthy subjects by using LSD and further tested whether brain activation during response inhibition under LSD exposure was related to LSD-induced visual hallucinations.MethodsIn a double-blind, randomized, placebo-controlled, cross-over study, LSD (100 µg) and placebo were administered to 18 healthy subjects. Response inhibition was assessed using a functional magnetic resonance imaging Go/No-Go task. LSD-induced visual hallucinations were measured using the 5 Dimensions of Altered States of Consciousness (5D-ASC) questionnaire.ResultsRelative to placebo, LSD administration impaired inhibitory performance and reduced brain activation in the right middle temporal gyrus, superior/middle/inferior frontal gyrus and anterior cingulate cortex and in the left superior frontal and postcentral gyrus and cerebellum. Parahippocampal activation during response inhibition was differently related to inhibitory performance after placebo and LSD administration. Finally, activation in the left superior frontal gyrus under LSD exposure was negatively related to LSD-induced cognitive impairments and visual imagery.ConclusionOur findings show that 5-HT2AR activation by LSD leads to a hippocampal–prefrontal cortex-mediated breakdown of inhibitory processing, which might subsequently promote the formation of LSD-induced visual imageries. These findings help to better understand the neuropsychopharmacological mechanisms of visual hallucinations in LSD-induced states and neuropsychiatric disorders.


2021 ◽  
Vol 12 ◽  
Author(s):  
Aldo Alberto Conti ◽  
Alexander Mario Baldacchino

Introduction: Impairments in the multifaceted neuropsychological construct of cognitive impulsivity are a main feature of chronic tobacco smokers. According to the literature, these cognitive impairments are relevant for the initiation and maintenance of the smoking behavior. However, the neuroanatomical correlates of cognitive impulsivity in chronic smokers remain under-investigated.Methods: A sample of 28 chronic smokers (mean age = 28 years) not affected by polysubstance dependence and 24 matched non-smoker controls was recruited. Voxel Based Morphometry (VBM) was employed to assess Gray Matter (GM) volume differences between smokers and non-smokers. The relationships between GM volume and behavioral manifestations of impulsive choices (5 trial adjusting delay discounting task, ADT-5) and risky decision making (Cambridge Gambling Task, CGT) were also investigated.Results: VBM results revealed GM volume reductions in cortical and striatal brain regions of chronic smokers compared to non-smokers. Additionally, smokers showed heightened impulsive choices (p < 0.01, Cohen's f = 0.50) and a riskier decision- making process (p < 0.01, Cohen's f = 0.40) compared to non-smokers. GM volume reductions in the left Anterior Cingulate Cortex (ACC) correlated with impaired impulsive and risky choices, while GM volume reductions in the left Ventrolateral Prefrontal Cortex (VLPFC) and Caudate correlated with heightened impulsive choices. Reduced GM volume in the left VLPFC correlated with younger age at smoking initiation (mean = 16 years).Conclusion: Smokers displayed significant GM volume reductions and related cognitive impulsivity impairments compared to non-smoker individuals. Longitudinal studies would be required to assess whether these impairments underline neurocognitive endophenotypes or if they are a consequence of tobacco exposure on the adolescent brain.


2021 ◽  
Author(s):  
Ting-Peng Liang ◽  
Yuwen Li ◽  
Nai-Shing Yen ◽  
Ofir Turel ◽  
Sen-Mou Hsu

Abstract Background: Escalation of commitment is a common bias in human decision making. The present study examined (1) differences in neural recruitment for escalation and de-escalation decisions of prior investments, and (2) how the activations of these brain networks are modulated by two factors that are often argued to modulate the behavior: (i) self-responsibility, and (ii) framing of the success probabilities. Results: Imaging data were obtained from functional magnetic resonance imaging (fMRI) applied to 29 participants. A whole-brain analysis was conducted to compare brain activations between conditions. ROI analysis, then, was used to examine if these significant activations were modulated by two contextual factors. Finally, mediation analysis was applied to explore how the contextual factors affect escalation decisions through brain activations. The findings showed that (1) escalation decisions are faster than de-escalation decisions, (2) the corresponding network of brain regions recruited for escalation (anterior cingulate cortex, insula and precuneus) decisions differs from this recruited for de-escalation decisions (inferior and superior frontal gyri), (3) the switch from escalation to de-escalation is primarily frontal gyri dependent, and (4) activation in the anterior cingulate cortex, insula and precuneus were further increased in escalation decisions, when the outcome probabilities of the follow-up investment were positively framed; and activation in the inferior and superior frontal gyri in de-escalation decisions were increased when the outcome probabilities were negatively framed. Conclusions: Escalation and de-escalation decisions recruit different brain regions. Framing of possible outcomes as negative leads to escalation decisions through recruitment of the inferior frontal gyrus. Responsibility for decisions affects escalation decisions through recruitment of the superior (inferior) gyrus, when the decision is framed positively (negatively).


2021 ◽  
Author(s):  
Dongmei Gao ◽  
Mingzhou Gao ◽  
Li An ◽  
Yanhong Yu ◽  
Jieqiong Wang ◽  
...  

Abstract Background: Most studies on the mechanism behind premenstrual syndrome (PMS) have focused on fluctuating hormones, but little evidence exists regarding functional abnormalities in the affected brain regions of college students. Thus, the aim of this study is to localize PMS's abnormal brain regions by BOLD-fMRI in college students.Methods: Thirteen PMS patients and fifteen healthy control (HC) subjects underwent a BOLD-fMRI scan during the luteal phase induced by depressive emotion pictures. The BOLD-fMRI data were processed by SPM 8 software and rest software based on MATLAB platform. Each cluster volume threshold (cluster) was greater than 389 continuous voxels, and the brain area with single voxel threshold P < 0.05 (after correction) was defined as the area with a significant difference. The emotion report form and the instruction implementation checklist were used to evaluate the emotion induced by picture.Results: Compared to the HC, right inferior occipital gyrus, right middle occipital gyrus, right lingual gyrus, right fusiform gyrus, right inferior temporal gyrus, cerebelum_crus1_R,cerebelum_6_R, culmen, the cerebellum anterior lobe, tuber, cerebellar tonsil of PMS patients were enhanced activation. Sub-lobar,sub-gyral,extra-nuclear,right orbit part of superior frontal gyrus, right middle temporal gyrus, right Orbit part of inferior frontal gyrus, limbic lobe, right insula, bilateral anterior and adjacent cingulate gyrus, bilateral caudate, caudate head, bilateral putamen, left globus pallidus were decreased activation.Conclusion: Our findings may improve our understanding of the neural mechanisms involved in PMS.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Suzanne Oosterwijk ◽  
Lukas Snoek ◽  
Jurriaan Tekoppele ◽  
Lara H. Engelbert ◽  
H. Steven Scholte

Abstract People often seek out stories, videos or images that detail death, violence or harm. Considering the ubiquity of this behavior, it is surprising that we know very little about the neural circuits involved in choosing negative information. Using fMRI, the present study shows that choosing intensely negative stimuli engages similar brain regions as those that support extrinsic incentives and “regular” curiosity. Participants made choices to view negative and positive images, based on negative (e.g., a soldier kicks a civilian against his head) and positive (e.g., children throw flower petals at a wedding) verbal cues. We hypothesized that the conflicting, but relatively informative act of choosing to view a negative image, resulted in stronger activation of reward circuitry as opposed to the relatively uncomplicated act of choosing to view a positive stimulus. Indeed, as preregistered, we found that choosing negative cues was associated with activation of the striatum, inferior frontal gyrus, anterior insula, and anterior cingulate cortex, both when contrasting against a passive viewing condition, and when contrasting against positive cues. These findings nuance models of decision-making, valuation and curiosity, and are an important starting point when considering the value of seeking out negative content.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mi Li ◽  
Hongpei Xu ◽  
Shengfu Lu

Background. In the past, studies on the lateralization of the left and right hemispheres of the brain suggested that depression is dominated by the right hemisphere of the brain, but the neural basis of this theory remains unclear. Method. Functional magnetic resonance imaging of the brain was performed in 22 depressive patients and 15 healthy controls. The differences in the mean values of the regional homogeneity (ReHo) of two groups were compared, and the low-frequency amplitudes of these differential brain regions were compared. Results. The results show that compared with healthy subjects, depressive patients had increased ReHo values in the right superior temporal gyrus, right middle temporal gyrus, left inferior temporal gyrus, left middle temporal gyrus, right middle frontal gyrus, triangular part of the right inferior frontal gyrus, orbital part of the right inferior frontal gyrus, right superior occipital gyrus, right middle occipital gyrus, bilateral anterior cingulate, and paracingulate gyri; reduced ReHo values were seen in the right fusiform gyrus, left middle occipital gyrus, left lingual gyrus, and left inferior parietal except in the supramarginal and angular gyri. Conclusions. The results show that regional homogeneity mainly occurs in the right brain, and the overall performance of the brain is such that right hemisphere synchronization is enhanced while left hemisphere synchronization is weakened. ReHo abnormalities in the resting state can predict abnormalities in individual neurological activities that reflect changes in the structure and function of the brain; abnormalities shown with this indicator are the neuronal basis for the phenomenon that the right hemisphere of the brain has a dominant effect on depression.


2009 ◽  
Vol 24 (S1) ◽  
pp. 1-1 ◽  
Author(s):  
S. Borgwardt ◽  
P. Allen ◽  
S. Bhattacharyya ◽  
P. Fusar-Poli ◽  
J.A. Crippa ◽  
...  

Background:This study examined the effect of Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) on brain activation during a motor inhibition task.Methods:Functional magnetic resonance imaging and behavioural measures were recorded while 15 healthy volunteers performed a Go/No-Go task following administration of either THC or CBD or placebo in a double-blind, pseudo-randomized, placebo-controlled repeated measures within-subject design.Results:Relative to placebo, THC attenuated activation in the right inferior frontal and the anterior cingulate gyrus. In contrast, CBD deactivated the left temporal cortex and insula. These effects were not related to changes in anxiety, intoxication, sedation, and psychotic symptoms.Conclusions:These data suggest that THC attenuates the engagement of brain regions that mediate response inhibition. CBD modulated function in regions not usually implicated in response inhibition.


Author(s):  
Milena Radoman ◽  
Lynne Lieberman ◽  
Jagan Jimmy ◽  
Stephanie M Gorka

Abstract Temporally unpredictable stimuli influence behavior across species, as previously demonstrated for sequences of simple threats and rewards with fixed or variable onset. Neuroimaging studies have identified a specific frontolimbic circuit that may become engaged during the anticipation of temporally unpredictable threat (U-threat). However, the neural mechanisms underlying processing of temporally unpredictable reward (U-reward) are incompletely understood. It is also unclear whether these processes are mediated by overlapping or distinct neural systems. These knowledge gaps are noteworthy given that disruptions within these neural systems may lead to maladaptive response to uncertainty. Here, using functional magnetic resonance imaging data from a sample of 159 young adults, we showed that anticipation of both U-threat and U-reward elicited activation in the right anterior insula, right ventral anterior nucleus of the thalamus and right inferior frontal gyrus. U-threat also activated the right posterior insula and dorsal anterior cingulate cortex, relative to U-reward. In contrast, U-reward elicited activation in the right fusiform and left middle occipital gyrus, relative to U-threat. Although there is some overlap in the neural circuitry underlying anticipation of U-threat and U-reward, these processes appear to be largely mediated by distinct circuits. Future studies are needed to corroborate and extend these preliminary findings.


2018 ◽  
Vol 115 (33) ◽  
pp. E7680-E7689 ◽  
Author(s):  
Xiaoxue Gao ◽  
Hongbo Yu ◽  
Ignacio Sáez ◽  
Philip R. Blue ◽  
Lusha Zhu ◽  
...  

Humans can integrate social contextual information into decision-making processes to adjust their responses toward inequity. This context dependency emerges when individuals receive more (i.e., advantageous inequity) or less (i.e., disadvantageous inequity) than others. However, it is not clear whether context-dependent processing of advantageous and disadvantageous inequity involves differential neurocognitive mechanisms. Here, we used fMRI to address this question by combining an interactive game that modulates social contexts (e.g., interpersonal guilt) with computational models that enable us to characterize individual weights on inequity aversion. In each round, the participant played a dot estimation task with an anonymous coplayer. The coplayer would receive pain stimulation with 50% probability when either of them responded incorrectly. At the end of each round, the participant completed a variant of dictator game, which determined payoffs for him/herself and the coplayer. Computational modeling demonstrated the context dependency of inequity aversion: when causing pain to the coplayer (i.e., guilt context), participants cared more about the advantageous inequity and became more tolerant of the disadvantageous inequity, compared with other conditions. Consistently, neuroimaging results suggested the two types of inequity were associated with differential neurocognitive substrates. While the context-dependent processing of advantageous inequity was associated with social- and mentalizing-related processes, involving left anterior insula, right dorsolateral prefrontal cortex, and dorsomedial prefrontal cortex, the context-dependent processing of disadvantageous inequity was primarily associated with emotion- and conflict-related processes, involving left posterior insula, right amygdala, and dorsal anterior cingulate cortex. These results extend our understanding of decision-making processes related to inequity aversion.


Sign in / Sign up

Export Citation Format

Share Document