scholarly journals Brain Activation of College Students in China With Premenstrual Syndrome Localized by BOLD-fMRI

Author(s):  
Dongmei Gao ◽  
Mingzhou Gao ◽  
Li An ◽  
Yanhong Yu ◽  
Jieqiong Wang ◽  
...  

Abstract Background: Most studies on the mechanism behind premenstrual syndrome (PMS) have focused on fluctuating hormones, but little evidence exists regarding functional abnormalities in the affected brain regions of college students. Thus, the aim of this study is to localize PMS's abnormal brain regions by BOLD-fMRI in college students.Methods: Thirteen PMS patients and fifteen healthy control (HC) subjects underwent a BOLD-fMRI scan during the luteal phase induced by depressive emotion pictures. The BOLD-fMRI data were processed by SPM 8 software and rest software based on MATLAB platform. Each cluster volume threshold (cluster) was greater than 389 continuous voxels, and the brain area with single voxel threshold P < 0.05 (after correction) was defined as the area with a significant difference. The emotion report form and the instruction implementation checklist were used to evaluate the emotion induced by picture.Results: Compared to the HC, right inferior occipital gyrus, right middle occipital gyrus, right lingual gyrus, right fusiform gyrus, right inferior temporal gyrus, cerebelum_crus1_R,cerebelum_6_R, culmen, the cerebellum anterior lobe, tuber, cerebellar tonsil of PMS patients were enhanced activation. Sub-lobar,sub-gyral,extra-nuclear,right orbit part of superior frontal gyrus, right middle temporal gyrus, right Orbit part of inferior frontal gyrus, limbic lobe, right insula, bilateral anterior and adjacent cingulate gyrus, bilateral caudate, caudate head, bilateral putamen, left globus pallidus were decreased activation.Conclusion: Our findings may improve our understanding of the neural mechanisms involved in PMS.

2020 ◽  
Vol 61 (10) ◽  
pp. 1388-1397
Author(s):  
Yi Cheng ◽  
Li Yan ◽  
Liqun Hu ◽  
Hongyun Wu ◽  
Xin Huang ◽  
...  

Background Previous studies have linked high myopia (HM) to brain activity, and the difference between HM and low myopia (LM) can be assessed. Purpose To study the differences in functional networks of brain activity between HM and LM by the voxel-level degree centrality (DC) method. Material and Methods Twenty-eight patients with HM (10 men, 18 women), 18 patients with LM (4 men, 14 women), and 59 healthy controls (27 men, 32 women) were enrolled in this study. The voxel-level DC method was used to assess spontaneous brain activity. Correlation analysis was used to explore the change of average DC value in different brain regions, in order to analyze differences in brain activity between HM and LM. Results DC values of the right cerebellum anterior lobe/brainstem, right parahippocampal gyrus, and left caudate in HM patients were significantly higher than those in LM patients ( P < 0.05). In contrast, DC values of the left medial frontal gyrus, right inferior frontal gyrus, left middle frontal gyrus, and left inferior parietal lobule were significantly lower in patients with HM ( P < 0.05). However, there was no correlation between behavior and average DC values in different brain regions ( P < 0.05). Conclusion Different changes in brain regions between HM and LM may indicate differences in neural mechanisms between HM and LM. DC values could be useful as biomarkers for differences in brain activity between patients with HM and LM. This study provides a new method to assess differences in functional networks of brain activity between patients with HM and LM.


2021 ◽  
Author(s):  
Yoshiharu Ikutani ◽  
Takeshi D. Itoh ◽  
Takatomi Kubo

AbstractThe understanding of brain activity during program comprehension have advanced thanks to noninvasive neuroimaging techniques, such as functional magnetic resonance imaging (fMRI). However, individual neuroimaging studies of program comprehension often provided inconsistent results and made it difficult to identify the neural bases. To identify the essential brain regions, this study performed a small meta-analysis on recent fMRI studies of program comprehension using multilevel kernel density analysis (MKDA). Our analysis identified a set of brain regions consistently activated in various program comprehension tasks. These regions consisted of three clusters, each of which centered at the left inferior frontal gyrus pars triangularis (IFG Tri), posterior part of middle temporal gyrus (pMTG), and right middle frontal gyrus (MFG). Additionally, subsequent analyses revealed relationships among the activation patterns in the previous studies and multiple cognitive functions. These findings suggest that program comprehension mainly recycles the language-related networks and partially employs other domain-general resources in the human brain.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Christopher N. Cascio ◽  
Nina Lauharatanahirun ◽  
Gwendolyn M. Lawson ◽  
Martha J. Farah ◽  
Emily B. Falk

AbstractResponse inhibition and socioeconomic status (SES) are critical predictors of many important outcomes, including educational attainment and health. The current study extends our understanding of SES and cognition by examining brain activity associated with response inhibition, during the key developmental period of adolescence. Adolescent males (N = 81), aged 16–17, completed a response inhibition task while undergoing fMRI brain imaging and reported on their parents’ education, one component of socioeconomic status. A region of interest analysis showed that parental education was associated with brain activation differences in the classic response inhibition network (right inferior frontal gyrus + subthalamic nucleus + globus pallidus) despite the absence of consistent parental education-performance effects. Further, although activity in our main regions of interest was not associated with performance differences, several regions that were associated with better inhibitory performance (ventromedial prefrontal cortex, middle frontal gyrus, middle temporal gyrus, amygdala/hippocampus) also differed in their levels of activation according to parental education. Taken together, these results suggest that individuals from households with higher versus lower parental education engage key brain regions involved in response inhibition to differing degrees, though these differences may not translate into performance differences.


2020 ◽  
Vol 1 (3) ◽  
pp. 339-364
Author(s):  
David I. Saltzman ◽  
Emily B. Myers

The extent that articulatory information embedded in incoming speech contributes to the formation of new perceptual categories for speech sounds has been a matter of discourse for decades. It has been theorized that the acquisition of new speech sound categories requires a network of sensory and speech motor cortical areas (the “dorsal stream”) to successfully integrate auditory and articulatory information. However, it is possible that these brain regions are not sensitive specifically to articulatory information, but instead are sensitive to the abstract phonological categories being learned. We tested this hypothesis by training participants over the course of several days on an articulable non-native speech contrast and acoustically matched inarticulable nonspeech analogues. After reaching comparable levels of proficiency with the two sets of stimuli, activation was measured in fMRI as participants passively listened to both sound types. Decoding of category membership for the articulable speech contrast alone revealed a series of left and right hemisphere regions outside of the dorsal stream that have previously been implicated in the emergence of non-native speech sound categories, while no regions could successfully decode the inarticulable nonspeech contrast. Although activation patterns in the left inferior frontal gyrus, the middle temporal gyrus, and the supplementary motor area provided better information for decoding articulable (speech) sounds compared to the inarticulable (sine wave) sounds, the finding that dorsal stream regions do not emerge as good decoders of the articulable contrast alone suggests that other factors, including the strength and structure of the emerging speech categories are more likely drivers of dorsal stream activation for novel sound learning.


2009 ◽  
Vol 21 (11) ◽  
pp. 2085-2099 ◽  
Author(s):  
Cathelijne M. J. Y. Tesink ◽  
Karl Magnus Petersson ◽  
Jos J. A. van Berkum ◽  
Daniëlle van den Brink ◽  
Jan K. Buitelaar ◽  
...  

When interpreting a message, a listener takes into account several sources of linguistic and extralinguistic information. Here we focused on one particular form of extralinguistic information, certain speaker characteristics as conveyed by the voice. Using functional magnetic resonance imaging, we examined the neural structures involved in the unification of sentence meaning and voice-based inferences about the speaker's age, sex, or social background. We found enhanced activation in the inferior frontal gyrus bilaterally (BA 45/47) during listening to sentences whose meaning was incongruent with inferred speaker characteristics. Furthermore, our results showed an overlap in brain regions involved in unification of speaker-related information and those used for the unification of semantic and world knowledge information [inferior frontal gyrus bilaterally (BA 45/47) and left middle temporal gyrus (BA 21)]. These findings provide evidence for a shared neural unification system for linguistic and extralinguistic sources of information and extend the existing knowledge about the role of inferior frontal cortex as a crucial component for unification during language comprehension.


2018 ◽  
Author(s):  
Giulia V. Elli ◽  
Connor Lane ◽  
Marina Bedny

AbstractWhat is the neural organization of the mental lexicon? Previous research suggests that partially distinct cortical networks are active during verb and noun processing. Are these networks preferentially involved in representing the meanings of verbs as opposed to nouns? We used multivoxel pattern analysis (MVPA) to investigate whether brain regions that are more active during verb than noun processing are also more sensitive to distinctions among their preferred lexical class. Participants heard four types of verbs (light emission, sound emission, hand-related actions, mouth-related actions) and four types of nouns (birds, mammals, manmade places, natural places). As previously shown, the left posterior middle temporal gyrus (LMTG) and inferior frontal gyrus (LIFG) responded more to verbs, whereas areas in the inferior parietal lobule (LIP), precuneus (LPC), and inferior temporal (LIT) cortex responded more to nouns. MVPA revealed a double-dissociation in semantic sensitivity: classification was more accurate among verbs than nouns in the LMTG, and among nouns than verbs in the LIP, LPC, and LIT. However, classification was similar for verbs and nouns in the LIFG, and above chance for the non-preferred category in all regions. These results suggest that the meanings of verbs and nouns are represented in partially non-overlapping networks.


2021 ◽  
Vol 15 ◽  
Author(s):  
Bei Luo ◽  
Yue Lu ◽  
Chang Qiu ◽  
Wenwen Dong ◽  
Chen Xue ◽  
...  

BackgroundTransient improvement in motor symptoms are immediately observed in patients with Parkinson’s disease (PD) after an electrode has been implanted into the subthalamic nucleus (STN) for deep brain stimulation (DBS). This phenomenon is known as the microlesion effect (MLE). However, the underlying mechanisms of MLE is poorly understood.PurposeWe utilized resting state functional MRI (rs-fMRI) to evaluate changes in spontaneous brain activity and networks in PD patients during the microlesion period after DBS.MethodOverall, 37 PD patients and 13 gender- and age-matched healthy controls (HCs) were recruited for this study. Rs-MRI information was collected from PD patients three days before DBS and one day after DBS, whereas the HCs group was scanned once. We utilized the amplitude of low-frequency fluctuation (ALFF) method in order to analyze differences in spontaneous whole-brain activity among all subjects. Furthermore, functional connectivity (FC) was applied to investigate connections between other brain regions and brain areas with significantly different ALFF before and after surgery in PD patients.ResultRelative to the PD-Pre-DBS group, the PD-Post-DBS group had higher ALFF in the right putamen, right inferior frontal gyrus, right precentral gyrus and lower ALFF in right angular gyrus, right precuneus, right posterior cingulate gyrus (PCC), left insula, left middle temporal gyrus (MTG), bilateral middle frontal gyrus and bilateral superior frontal gyrus (dorsolateral). Functional connectivity analysis revealed that these brain regions with significantly different ALFF scores demonstrated abnormal FC, largely in the temporal, prefrontal cortices and default mode network (DMN).ConclusionThe subthalamic microlesion caused by DBS in PD was found to not only improve the activity of the basal ganglia-thalamocortical circuit, but also reduce the activity of the DMN and executive control network (ECN) related brain regions. Results from this study provide new insights into the mechanism of MLE.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Xiaohui Yan ◽  
Ke Jiang ◽  
Hui Li ◽  
Ziyi Wang ◽  
Kyle Perkins ◽  
...  

Brain abnormalities in the reading network have been repeatedly reported in individuals with developmental dyslexia (DD); however, it is still not totally understood where the structural and functional abnormalities are consistent/inconsistent across languages. In the current multimodal meta-analysis, we found convergent structural and functional alterations in the left superior temporal gyrus across languages, suggesting a neural signature of DD. We found greater reduction in grey matter volume and brain activation in the left inferior frontal gyrus in morpho-syllabic languages (e.g. Chinese) than in alphabetic languages, and greater reduction in brain activation in the left middle temporal gyrus and fusiform gyrus in alphabetic languages than in morpho-syllabic languages. These language differences are explained as consequences of being DD while learning a specific language. In addition, we also found brain regions that showed increased grey matter volume and brain activation, presumably suggesting compensations and brain regions that showed inconsistent alterations in brain structure and function. Our study provides important insights about the etiology of DD from a cross-linguistic perspective with considerations of consistency/inconsistency between structural and functional alterations.


2008 ◽  
Vol 20 (12) ◽  
pp. 2153-2166 ◽  
Author(s):  
Anna Mestres-Missé ◽  
Estela Càmara ◽  
Antoni Rodriguez-Fornells ◽  
Michael Rotte ◽  
Thomas F. Münte

An important issue in language learning is how new words are integrated in the brain representations that sustain language processing. To identify the brain regions involved in meaning acquisition and word learning, we conducted a functional magnetic resonance imaging study. Young participants were required to deduce the meaning of a novel word presented within increasingly constrained sentence contexts that were read silently during the scanning session. Inconsistent contexts were also presented in which no meaning could be assigned to the novel word. Participants showed meaning acquisition in the consistent but not in the inconsistent condition. A distributed brain network was identified comprising the left anterior inferior frontal gyrus (BA 45), the middle temporal gyrus (BA 21), the parahippocampal gyrus, and several subcortical structures (the thalamus and the striatum). Drawing on previous neuroimaging evidence, we tentatively identify the roles of these brain areas in the retrieval, selection, and encoding of the meaning.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ailiang Miao ◽  
Yongwei Shi ◽  
Jing Xiang ◽  
Xiaoshan Wang ◽  
Jianqing Ge ◽  
...  

Abstract Background Extreme delta brush (EDB) is considered a potential marker for anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis. The brain regions involved in EDB are unclear. Case presentation A 16-year-old woman with anti-NMDAR encephalitis who was experiencing psychosis was admitted. Electroencephalography (EEG) and magnetoencephalography (MEG) were used to analyze EDB in the patient. EDB on EEG could be disturbed by opening and closing the eyes, by occipital alpha rhythms and by sleep-wake cycles. The MEG results showed beta activity originating from bilateral superior parietal lobes. However, the delta wave originated from bilateral superior temporal gyri, the right middle temporal gyrus, the right inferior frontal gyrus, and the left inferior parietal lobe. Conclusions Delta wave and beta activity might originate from different brain regions. Beta activity might be transmitted forward to the frontotemporal lobe and superimposed with delta activity to form EDB on EEG.


Sign in / Sign up

Export Citation Format

Share Document