scholarly journals Evaluation of Water seepage Along Proposed Baghdad Metro Tunnel Across Tigris River

2021 ◽  
Vol 24 (2) ◽  
pp. 149-158
Author(s):  
Aadil Abdulsalam Hamid ◽  
Haitham Alaa Husain

Water seepage can cause serious problems in geotechnical engineering especially for construction under the water level. Baghdad metro tunnel is one of the leading vital projects to solve the major problem of crowding roadways in a highly population increase city like Baghdad. In this study, the seepage rate that will flow toward different selected points along the tunnel section across Tigris River was calculated during the excavation process, with the consideration of three different water levels of River at maximum, moderate, and minimum water depths. A three-dimensional model of the study has been modeled using the finite element software (PLAXIS 3D V20). The water seepage was observed for six different locations on each route of the tunnel. The study showed that the change of water depth in the river has no significant effect on the seepage – time curve shape. However, increasing the water level in River from minimum to maximum leads to increase the seepage rate about 15%.  

2018 ◽  
Vol 162 ◽  
pp. 03004 ◽  
Author(s):  
Mahmoud Al-Khafaji ◽  
Hayder Al Thamiry ◽  
Ala Al-Saedi

Al Machraya River was considered as one of the water feeders of Hawizeh Marsh. In 1986, the outlet of this river into the marsh was blocked and the river was used as a main channel for the East Tigris Irrigation Project near Kalat Salih. This causes significant decrease in the available water supply sources, deterioration in the water quality distribution patterns and increasing the stagnation areas within the marsh. This research aims to study the possibility of reusing this river for feeding Hawizeh Marsh. A frequency analysis study was carried out to study the maximum and minimum probable water level (MMPWL) of Tigris River at the upstream of Kalat Salih Barrage. Six statistical models; Normal distribution, Log-Normal type II, Log-Normal type III, Pearson type III, Log- Pearson type III and Gumbel type I distribution were used to estimate the MMPWL. The results show that Pearson type III and Gumbel type I distribution models are the best to fit the maximum and minimum daily water level (WL), respectively, at the upstream of the Barrage. The estimated MMPWL were compared to the required WL in Hawizeh Marsh. The difference between Tigris River and Hawizeh Marsh water levels were found to be not operative to cause a significant flow toward the marsh. Therefore, Al Machraya River cannot be used to feed Hawizeh Marsh.


2013 ◽  
Vol 739 ◽  
pp. 283-286 ◽  
Author(s):  
Li Ming Wu ◽  
Zhen Qiang Wang

Since the three Gorges reservoir Water storage, reservoir water level have about 30m water levels fluctuation every year, different level will lead to the bank slope infiltration lines rise and fall, and influent on the bank slopes stability. The test according to Manzo reservoir laboratory test data and geological survey report, using the finite element software of ANSYS to establish the finite element model. The model put different water level decline speed, different osmotic coefficient and the different infiltration recharge tension cases to analysis separately,the result shows:1) more greater the reductions speed, more steeper the saturation lines luffing, more adverse the slopes stability;2) more smaller the permeability coefficient, more poor the slopes drainage capacity,more steeper the infiltration line, more poor the slopes stability; 3) seepage lines position higher than no infiltration seepage lines position.


Author(s):  
Krum Videnov ◽  
Vanya Stoykova

Monitoring water levels of lakes, streams, rivers and other water basins is of essential importance and is a popular measurement for a number of different industries and organisations. Remote water level monitoring helps to provide an early warning feature by sending advance alerts when the water level is increased (reaches a certain threshold). The purpose of this report is to present an affordable solution for measuring water levels in water sources using IoT and LPWAN. The assembled system enables recording of water level fluctuations in real time and storing the collected data on a remote database through LoRaWAN for further processing and analysis.


1997 ◽  
Vol 24 ◽  
pp. 288-292 ◽  
Author(s):  
Andrew P. Barrett ◽  
David N. Collins

Combined measurements of meltwater discharge from the portal and of water level in a borehole drilled to the bed of Findelengletscher, Switzerland, were obtained during the later part of the 1993 ablation season. A severe storm, lasting from 22 through 24 September, produced at least 130 mm of precipitation over the glacier, largely as rain. The combined hydrological records indicate periods during which the basal drainage system became constricted and water storage in the glacier increased, as well as phases of channel growth. During the storm, water pressure generally increased as water backed up in the drainage network. Abrupt, temporary falls in borehole water level were accompanied by pulses in portal discharge. On 24 September, whilst borehole water level continued to rise, water started to escape under pressure with a resultant increase in discharge. As the drainage network expanded, a large amount of debris was flushed from a wide area of the bed. Progressive growth in channel capacity as discharge increased enabled stored water to drain and borehole water level to fall rapidly. Possible relationships between observed borehole water levels and water pressures in subglacial channels are influenced by hydraulic conditions at the base of the hole, distance between the hole and a channel, and the nature of the substrate.


2018 ◽  
Author(s):  
Alfredo L. Aretxabaleta ◽  
Neil K. Ganju ◽  
Zafer Defne ◽  
Richard P. Signell

Abstract. Water level in semi-enclosed bays, landward of barrier islands, is mainly driven by offshore sea level fluctuations that are modulated by bay geometry and bathymetry, causing spatial variability in the ensuing response (transfer). Local wind setup can have a secondary role that depends on wind speed, fetch, and relative orientation of the wind direction and the bay. Inlet geometry and bathymetry primarily regulate the magnitude of the transfer between open ocean and bay. Tides and short-period offshore oscillations are more damped in the bays than longer-lasting offshore fluctuations, such as storm surge and sea level rise. We compare observed and modeled water levels at stations in a mid-Atlantic bay (Barnegat Bay) with offshore water level proxies. Observed water levels in Barnegat Bay are compared and combined with model results from the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system to evaluate the spatial structure of the water level transfer. Analytical models based on the dimensional characteristics of the bay are used to combine the observed data and the numerical model results in a physically consistent approach. Model water level transfers match observed values at locations inside the Bay in the storm frequency band (transfers ranging from 70–100 %) and tidal frequencies (10–55 %). The contribution of frequency-dependent local setup caused by wind acting along the bay is also considered. The approach provides transfer estimates for locations inside the Bay where observations were not available resulting in a complete spatial characterization. The approach allows for the study of the Bay response to alternative forcing scenarios (landscape changes, future storms, and rising sea level). Detailed spatial estimates of water level transfer can inform decisions on inlet management and contribute to the assessment of current and future flooding hazard in back-barrier bays and along mainland shorelines.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hendri Irwandi ◽  
Mohammad Syamsu Rosid ◽  
Terry Mart

AbstractThis research quantitatively and qualitatively analyzes the factors responsible for the water level variations in Lake Toba, North Sumatra Province, Indonesia. According to several studies carried out from 1993 to 2020, changes in the water level were associated with climate variability, climate change, and human activities. Furthermore, these studies stated that reduced rainfall during the rainy season due to the El Niño Southern Oscillation (ENSO) and the continuous increase in the maximum and average temperatures were some of the effects of climate change in the Lake Toba catchment area. Additionally, human interventions such as industrial activities, population growth, and damage to the surrounding environment of the Lake Toba watershed had significant impacts in terms of decreasing the water level. However, these studies were unable to determine the factor that had the most significant effect, although studies on other lakes worldwide have shown these factors are the main causes of fluctuations or decreases in water levels. A simulation study of Lake Toba's water balance showed the possibility of having a water surplus until the mid-twenty-first century. The input discharge was predicted to be greater than the output; therefore, Lake Toba could be optimized without affecting the future water level. However, the climate projections depicted a different situation, with scenarios predicting the possibility of extreme climate anomalies, demonstrating drier climatic conditions in the future. This review concludes that it is necessary to conduct an in-depth, comprehensive, and systematic study to identify the most dominant factor among the three that is causing the decrease in the Lake Toba water level and to describe the future projected water level.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2011
Author(s):  
Pablo Páliz Larrea ◽  
Xavier Zapata Ríos ◽  
Lenin Campozano Parra

Despite the importance of dams for water distribution of various uses, adequate forecasting on a day-to-day scale is still in great need of intensive study worldwide. Machine learning models have had a wide application in water resource studies and have shown satisfactory results, including the time series forecasting of water levels and dam flows. In this study, neural network models (NN) and adaptive neuro-fuzzy inference systems (ANFIS) models were generated to forecast the water level of the Salve Faccha reservoir, which supplies water to Quito, the Capital of Ecuador. For NN, a non-linear input–output net with a maximum delay of 13 days was used with variation in the number of nodes and hidden layers. For ANFIS, after up to four days of delay, the subtractive clustering algorithm was used with a hyperparameter variation from 0.5 to 0.8. The results indicate that precipitation was not influencing input in the prediction of the reservoir water level. The best neural network and ANFIS models showed high performance, with a r > 0.95, a Nash index > 0.95, and a RMSE < 0.1. The best the neural network model was t + 4, and the best ANFIS model was model t + 6.


Sign in / Sign up

Export Citation Format

Share Document