Analytical Study of MHD Thermoconvective Waves through its Propagation

2017 ◽  
Vol 3 (01) ◽  
Author(s):  
Madan Lal

Following is the analytical study on the propagation of undamped thermoconvective waves, an electrically conducting viscous fluid is hypothesized which has the property of uniform horizontal magnetic field in heating the uniform vertical concentration gradient for a solute. It has seen that undamped thermoconvective waves propagation in a specific order, whereas the heating of fluid, is based on the solute concentration, this decreased vertically or show vertical pattern. If the heating of fluid takes place in upward manner the propagation of waves is highly effected, the above aspect proves hypothetically and has shown that its laboratory demonstration is also possible.

2011 ◽  
Vol 25 (19) ◽  
pp. 2533-2542
Author(s):  
T. HAYAT ◽  
S. N. NEOSSI NGUETCHUE ◽  
F. M. MAHOMED

This investigation deals with the time-dependent flow of an incompressible viscous fluid bounded by an infinite plate. The fluid is electrically conducting under the influence of a transverse magnetic field. The plate moves with a time dependent velocity in its own plane. Both fluid and plate exhibit rigid body rotation with a constant angular velocity. The solutions for arbitrary velocity and magnetic field is presented through similarity and numerical approaches. It is found that rotation induces oscillations in the flow.


1969 ◽  
Vol 47 (15) ◽  
pp. 1621-1635 ◽  
Author(s):  
J. M. Gandhi

We present variational principles which characterize the solution of the equilibrium of a plane horizontal layer of an incompressible, electrically conducting fluid of electrical conductivity σ e.m.u., of magnetic permeability K, having a variable density ρ(z) in the vertical z direction, which is also the direction of gravity having acceleration g, and of viscosity μ(z) and which is rotating at Ω radians per second about the vertical axis in the presence of a horizontal magnetic field for the two cases:(i) When the electrically conducting fluid is assumed to be nonrotating (Ω = 0), with the conductivity σ being finite and the horizontal magnetic field being uniform.(ii) When the electrically conducting fluid is assumed to be rotating (Ω ± 0), with the conductivity σ being infinite and the horizontal magnetic field being stratified.Based on the variational principles for these two cases, an approximate solution is obtained for the special case of a fluid of finite depth d stratified according to the law ρ0 = ρ1 exp βz (ρ1 and β are some constants), for which kinematic viscosity ν is assumed to be constant. Growth rate and total wave number of the disturbance are related by two cubic equations, and for simplified cases explicit solutions are obtained. The properties of hydromagnetic waves generated are discussed.


2021 ◽  
Vol 26 (3) ◽  
pp. 72-83
Author(s):  
B.K. Kalita ◽  
R. Choudhury

Abstract A boundary layer flow of an electrically conducting viscous fluid past a converging channel in the presence of thermophoresis, heat source, chemical reaction, viscous dissipation and simultaneous heat and mass transfer characteristics is studied in the paper. An external magnetic field of uniform strength is applied transversely to the channel. The similarity solution has been used to transform the partial differential equations that represent the problem into a boundary value problem of coupled ordinary differential equations, which in turn are solved numerically using MATLAB’s built in solver bvp4c. Numerical computations are carried out to solve the problem and graphical illustrations are made to get the physical insight of the same. The convergent channel flow problem of an incompressible electrically conducting viscous fluid in the presence of a magnetic field has a wide range of applicability in different areas of engineering, specially in industrial metal casting and control of molten metal flow.


1965 ◽  
Vol 43 (4) ◽  
pp. 645-652 ◽  
Author(s):  
R. A. Wentzell ◽  
J. H. Blackwell

A study has been made of the behavior of the plane interface between a vacuum and an electrically conducting fluid subject to a normal gravitational force and a magnetic field parallel to the interface. The system is examined for perturbations which bend the lines of force, without restriction to the extensively used idealization of infinite electrical conductivity. The eigenvalue spectra obtained, which are surprisingly different from the simpler ones corresponding to infinite conductivity, are examined by approximate and numerical techniques over the complete range of electrical conductivity from infinity to zero. The disappearance of a normal mode solution above a critical value of conductivity is an interesting feature of the effect of finite conductivity on magnetohydrodynamic stability.


Sign in / Sign up

Export Citation Format

Share Document