scholarly journals Increasing the Radar Equivalent Energy Potential by “Track Before Detect” Method

Author(s):  
S. M. Kostromitsky ◽  
V. M. Artemiev ◽  
D. S. Nefedov

The problem of radar detection of small-sized targets using the traditional methods of selection of signals embedded in background noise is considered. It is shown that for a false alarm rate of 10–5, which provides for 1–2 false alarms within the entire coverage of the modern 3D radar, the probability of detection of a small-sized target is getting unacceptably low. Repeatedly decreasing the threshold can provide an acceptable level of the detection probability at ultra-low signal-tonoise ratio (SNR) values. At the same time, decreasing the threshold will result in an unacceptable increase of the false alarm rate. A new target detection procedure using the “track before detect” method (TBD) is proposed. In the TBD procedure, the target is considered detected when two conditions are met: the signal exceeds once a definite threshold; the target is detected within a strictly defined observation area (acquisition or tracking gate). For low SNR values in the range of 3–8 dB and equal false alarm rate, the detection probability increases by 20–50 % compared to the traditional detection method. The simulation results showed a strong dependence of efficacy of the TBD algorithm on the threshold value and the decision rule. The possibility is noted of adaptive control over the threshold due to the use the detection results in the preceding scanning cycles, as well as the introduction of matrix radar surveillance not only by the target coordinates and parameters, but also by the detection threshold, decision rules, etc. Examination of these issues is the subject of further research.

Geophysics ◽  
1974 ◽  
Vol 39 (5) ◽  
pp. 633-643 ◽  
Author(s):  
R. R. Blandford

The on‐line operation of an automatic event detector has been evaluated at the Tonto Forest Observatory short‐period seismic array. For 31 seismometers and one fixed threshold, the 90 percent incremental detection threshold on the Kuril Island beam, centered at Δ=70 degrees, is [Formula: see text] with an experimentally determined false alarm rate of 0.17 per day. This compares favorably with the capabilities of a human operator. Storms in the Kurils significantly affect the distribution of amplitudes of the F-statistic detection trace, and we estimate that most of the false alarms observed at the operating threshold can be traced to the statistical bias introduced by this storm‐generated energy. If the threshold were adjusted to maintain a constant false alarm rate, the maximum effect on the threshold magnitude would be [Formula: see text].


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1643
Author(s):  
Ming Liu ◽  
Shichao Chen ◽  
Fugang Lu ◽  
Mengdao Xing ◽  
Jingbiao Wei

For target detection in complex scenes of synthetic aperture radar (SAR) images, the false alarms in the land areas are hard to eliminate, especially for the ones near the coastline. Focusing on the problem, an algorithm based on the fusion of multiscale superpixel segmentations is proposed in this paper. Firstly, the SAR images are partitioned by using different scales of superpixel segmentation. For the superpixels in each scale, the land-sea segmentation is achieved by judging their statistical properties. Then, the land-sea segmentation results obtained in each scale are combined with the result of the constant false alarm rate (CFAR) detector to eliminate the false alarms located on the land areas of the SAR image. In the end, to enhance the robustness of the proposed algorithm, the detection results obtained in different scales are fused together to realize the final target detection. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.


2018 ◽  
Vol 33 (6) ◽  
pp. 1501-1511 ◽  
Author(s):  
Harold E. Brooks ◽  
James Correia

Abstract Tornado warnings are one of the flagship products of the National Weather Service. We update the time series of various metrics of performance in order to provide baselines over the 1986–2016 period for lead time, probability of detection, false alarm ratio, and warning duration. We have used metrics (mean lead time for tornadoes warned in advance, fraction of tornadoes warned in advance) that work in a consistent way across the official changes in policy for warning issuance, as well as across points in time when unofficial changes took place. The mean lead time for tornadoes warned in advance was relatively constant from 1986 to 2011, while the fraction of tornadoes warned in advance increased through about 2006, and the false alarm ratio slowly decreased. The largest changes in performance take place in 2012 when the default warning duration decreased, and there is an apparent increased emphasis on reducing false alarms. As a result, the lead time, probability of detection, and false alarm ratio all decrease in 2012. Our analysis is based, in large part, on signal detection theory, which separates the quality of the warning system from the threshold for issuing warnings. Threshold changes lead to trade-offs between false alarms and missed detections. Such changes provide further evidence for changes in what the warning system as a whole considers important, as well as highlighting the limitations of measuring performance by looking at metrics independently.


Author(s):  
Sunilkumar Soni ◽  
Santanu Das ◽  
Aditi Chattopadhyay

An optimal sensor placement methodology is proposed based on detection theory framework to maximize the detection rate and minimize the false alarm rate. Minimizing the false alarm rate for a given detection rate plays an important role in improving the efficiency of a Structural Health Monitoring (SHM) system as it reduces the number of false alarms. The placement technique is such that the sensor features are as directly correlated and as sensitive to damage as possible. The technique accounts for a number of factors, like actuation frequency and strength, minimum damage size, damage detection scheme, material damping, signal to noise ratio (SNR) and sensing radius. These factors are not independent and affect each other. Optimal sensor placement is done in two steps. First, a sensing radius, which can capture any detectable change caused by a perturbation and above a certain threshold, is calculated. This threshold value is based on Neyman-Pearson detector that maximizes the detection rate for a fixed false alarm rate. To avoid sensor redundancy, a criterion to minimize sensing region overlaps of neighboring sensors is defined. Based on the sensing region and the minimum overlap concept, number of sensors needed on a structural component is calculated. In the second step, a damage distribution pattern, known as probability of failure distribute, is calculated for a structural component using finite element analysis. This failure distribution helps in selecting the most sensitive sensors, thereby removing those making remote contributions to the overall detection scheme.


2016 ◽  
Vol 33 (4) ◽  
pp. 723-739 ◽  
Author(s):  
James B. Mead

AbstractDetection of meteorological radar signals is often carried out using power averaging with noise subtraction either in the time domain or the spectral domain. This paper considers the relative signal processing gain of these two methods, showing a clear advantage for spectral-domain processing when normalized spectral width is less than ~0.1. A simple expression for the optimal discrete Fourier transform (DFT) length to maximize signal processing gain is presented that depends only on the normalized spectral width and the time-domain weighting function. The relative signal processing gain between noncoherent power averaging and spectral processing is found to depend on a variety of parameters, including the radar wavelength, spectral width, available observation time, and the false alarm rate. Expressions presented for the probability of detection for noncoherent and spectral-based processing also depend on these same parameters. Results of this analysis show that DFT-based processing can provide a substantial advantage in signal processing gain and probability of detection, especially when the normalized spectral width is small and when a large number of samples are available. Noncoherent power estimation can provide superior probability of detection when the normalized spectral width is greater than ~0.1, especially when the desired false alarm rate exceeds 10%.


Author(s):  
Puneeth K M ◽  
Poornima M S

The basic idea of 5th generation New Radio (5GNR) is to have very high data rate and to make it work efficiently for all Internet of Things (IOT) applications like healthcare, Automotive, Industrial etc. applications. This paper provides the Orthogonal Frequency Division Multiple Access (OFDM) baseband signal generation and detection method for Physical Random-Access Channel (PRACH). The proposed model provides four scenarios of preamble detection i.e., Preamble detection probability, Miss-detection probability, False alarm probability and null. We achieved the target of 99% of Probability of Detection and less than 0.1% of False-alarm probability at certain SNR as specified according to 3gpp standard requirements when tested in Additive White Gaussian Noise (AWGN) channel and Extended Typical Urban (ETU) channel.


Author(s):  
Jabran Akhtar

AbstractA desired objective in radar target detection is to satisfy two very contradictory requirements: offer a high probability of detection with a low false alarm rate. In this paper, we propose the utilization of artificial neural networks for binary classification of targets detected by a depreciated detection process. It is shown that trained neural networks are capable of identifying false detections with considerable accuracy and can to this extent utilize information present in guard cells and Doppler profiles. This allows for a reduction in the false alarm rate with only moderate loss in the probability of detection. With an appropriately designed neural network, an overall improved system performance can be achieved when compared against traditional constant false alarm rate detectors for the specific trained scenarios.


2020 ◽  
Vol 12 (13) ◽  
pp. 2089 ◽  
Author(s):  
Elise Colin Koeniguer ◽  
Jean-Marie Nicolas

This paper discusses change detection in SAR time-series. First, several statistical properties of the coefficient of variation highlight its pertinence for change detection. Subsequently, several criteria are proposed. The coefficient of variation is suggested to detect any kind of change. Furthermore, several criteria that are based on ratios of coefficients of variations are proposed to detect long events, such as construction test sites, or point-event, such as vehicles. These detection methods are first evaluated on theoretical statistical simulations to determine the scenarios where they can deliver the best results. The simulations demonstrate the greater sensitivity of the coefficient of variation to speckle mixtures, as in the case of agricultural plots. Conversely, they also demonstrate the greater specificity of the other criteria for the cases addressed: very short event or longer-term changes. Subsequently, detection performance is assessed on real data for different types of scenes and sensors (Sentinel-1, UAVSAR). In particular, a quantitative evaluation is performed with a comparison of our solutions with baseline methods. The proposed criteria achieve the best performance, with reduced computational complexity. On Sentinel-1 images containing mainly construction test sites, our best criterion reaches a probability of change detection of 90% for a false alarm rate that is equal to 5%. On UAVSAR images containing boats, the criteria proposed for short events achieve a probability of detection equal to 90% of all pixels belonging to the boats, for a false alarm rate that is equal to 2%.


2019 ◽  
Vol 49 (16) ◽  
pp. 2772-2780 ◽  
Author(s):  
J. N. de Boer ◽  
M. M. J. Linszen ◽  
J. de Vries ◽  
M. J. L. Schutte ◽  
M. J. H. Begemann ◽  
...  

AbstractBackgroundStudies investigating the underlying mechanisms of hallucinations in patients with schizophrenia suggest that an imbalance in top-down expectations v. bottom-up processing underlies these errors in perception. This study evaluates this hypothesis by testing if individuals drawn from the general population who have had auditory hallucinations (AH) have more misperceptions in auditory language perception than those who have never hallucinated.MethodsWe used an online survey to determine the presence of hallucinations. Participants filled out the Questionnaire for Psychotic Experiences and participated in an auditory verbal recognition task to assess both correct perceptions (hits) and misperceptions (false alarms). A hearing test was performed to screen for hearing problems.ResultsA total of 5115 individuals from the general Dutch population participated in this study. Participants who reported AH in the week preceding the test had a higher false alarm rate in their auditory perception compared with those without such (recent) experiences. The more recent the AH were experienced, the more mistakes participants made. While the presence of verbal AH (AVH) was predictive for false alarm rate in auditory language perception, the presence of non-verbal or visual hallucinations were not.ConclusionsThe presence of AVH predicted false alarm rate in auditory language perception, whereas the presence of non-verbal auditory or visual hallucinations was not, suggesting that enhanced top-down processing does not transfer across modalities. More false alarms were observed in participants who reported more recent AVHs. This is in line with models of enhanced influence of top-down expectations in persons who hallucinate.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2008 ◽  
Author(s):  
Bruna G. Palm ◽  
Dimas I. Alves ◽  
Mats I. Pettersson ◽  
Viet T. Vu ◽  
Renato Machado ◽  
...  

This paper presents five different statistical methods for ground scene prediction (GSP) in wavelength-resolution synthetic aperture radar (SAR) images. The GSP image can be used as a reference image in a change detection algorithm yielding a high probability of detection and low false alarm rate. The predictions are based on image stacks, which are composed of images from the same scene acquired at different instants with the same flight geometry. The considered methods for obtaining the ground scene prediction include (i) autoregressive models; (ii) trimmed mean; (iii) median; (iv) intensity mean; and (v) mean. It is expected that the predicted image presents the true ground scene without change and preserves the ground backscattering pattern. The study indicates that the the median method provided the most accurate representation of the true ground. To show the applicability of the GSP, a change detection algorithm was considered using the median ground scene as a reference image. As a result, the median method displayed the probability of detection of 97 % and a false alarm rate of 0.11 / km 2 , when considering military vehicles concealed in a forest.


Sign in / Sign up

Export Citation Format

Share Document