scholarly journals Methods of determination of the gas-dynamic characteristics of a jet nozzle of an aerodynamic object

Author(s):  
A. Ph. Ilyushchanka ◽  
A. K. Kryvanos ◽  
A. D. Chorny ◽  
Y. Ya. Piatsiushyk

The efficiency of aerodynamic objects with jet engines is the result of many factors, among which nozzle parameters are of great importance in relation to the general engine design and the energy source, that determines the composition and properties of the engine working medium. In this respect, an urgent need was to calculate nozzle gas-dynamic characteristics and geometric parameters at various designing and testing stages of jet engines. Relatively simple calculations involving a large number of assumptions and detailed modeling with regard to the maximum possible number of factors are the basis of the existing modeling approaches. In the present work, the problem was to assess an agreement between such modeling methods of a specific ‘high-energy material – working medium – nozzle’ system and the experimental ones. The calculations using one-dimensional nozzle theory and the gas dynamics modeling method revealed a 6 % difference in the results of various parameters. At the same time, a closer agreement was noted between the experimental data and the results predicted by the gas dynamics modeling method. Moreover, in comparison to one-dimensional theory, the gas dynamics modeling method of an engine jet nozzle is more labor-intensive and expensive for calculations. Therefore, from the practical viewpoint, it is advisable to give preference to one-dimensional theory to calculate the engine construction and to verify calculations with the use of the modeling methods.

1969 ◽  
Vol 24 (10) ◽  
pp. 1449-1457
Author(s):  
H. Klingenberg ◽  
F. Sardei ◽  
W. Zimmermann

Abstract In continuation of the work on interaction between shock waves and magnetic fields 1,2 the experiments reported here measured the atomic and electron densities in the interaction region by means of an interferometric and a spectroscopic method. The transient atomic density was also calculated using a one-dimensional theory based on the work of Johnson3 , but modified to give an improved physical model. The experimental results were compared with the theoretical predictions.


2001 ◽  
Vol 68 (6) ◽  
pp. 865-868 ◽  
Author(s):  
P. Ladeve`ze ◽  
J. G. Simmonds

The exact theory of linearly elastic beams developed by Ladeve`ze and Ladeve`ze and Simmonds is illustrated using the equations of plane stress for a fully anisotropic elastic body of rectangular shape. Explicit formulas are given for the cross-sectional material operators that appear in the special Saint-Venant solutions of Ladeve`ze and Simmonds and in the overall beamlike stress-strain relations between forces and a moment (the generalized stress) and derivatives of certain one-dimensional displacements and a rotation (the generalized displacement). A new definition is proposed for built-in boundary conditions in which the generalized displacement vanishes rather than pointwise displacements or geometric averages.


Author(s):  
R. H. Kim

Abstract An investigation of air flow along a 90 degree elbow-like tube is conducted to determine the velocity and temperature distributions of the flow. The tube has a sharp 90 degree turn with a radius of curvature of almost zero. The flow is assumed to be a steady two-dimensional turbulent flow satisfying the ideal gas relation. The flow will be analyzed using a finite difference technique with the K-ε turbulence model, and the algebraic stress model (ASM). The FLUENT code was used to determine the parameter distributions in the passage. There are certain conditions for which the K-ε model does not describe the fluid phenomenon properly. For these conditions, an alternative turbulence model, the ASM with or without QUICK was employed. FLUENT has these models among its features. The results are compared with the result computed by using elementary one-dimensional theory including the kinetic energy loss along the passage of the sharp 90 degree curved tube.


2021 ◽  
Vol 933 ◽  
Author(s):  
Yu Liang ◽  
Xisheng Luo

Shock-induced light-fluid-layer evolution is firstly investigated experimentally and theoretically. Specifically, three quasi-one-dimensional helium gas layers with different layer thicknesses are generated to study the wave patterns and interface motions. Six quasi-two-dimensional helium gas layers with diverse layer thicknesses and amplitude combinations are created to explore the Richtmyer–Meshkov instability of a light-fluid layer. Due to the multiple reflected shocks reverberating inside a light-fluid layer, the speeds of the two interfaces gradually converge, and the layer thickness saturates eventually. A general one-dimensional theory is adopted to describe the two interfaces’ motions and the layer thickness variations. It is found that, for the first interface, the end time of its phase reversal determines the influence of the reflected shocks on it. However, the reverberated shocks indeed lead to the second interface being more unstable. When the two interfaces are initially in phase, and the initial fluid layer is very thin, the two interfaces’ spike heads collide and stabilise the two interfaces. Linear and nonlinear models are successfully adopted by considering the interface-coupling effect and the reverberated shocks to predict the two interfaces’ perturbation growths in all regimes. The interfacial instability of a light-fluid layer is quantitatively compared with that of a heavy-fluid layer. It is concluded that the kind of waves reverberating inside a fluid layer significantly affects the fluid-layer evolution.


Author(s):  
Gonçalo Neves Carneiro ◽  
Pedro Ribeiro

The vibrations of beams with a breathing crack are investigated taking into account geometrical non-linear effects. The crack is modeled via a function that reduces the stiffness, as proposed by Christides and Barr (One-dimensional theory of cracked Bernoulli–Euler beams. Int J Mech Sci 1984). The bilinear behavior due to the crack closing and opening is considered. The equations of motion are obtained via a p-version finite element method, with shape functions recently proposed, which are adequate for problems with abrupt localised variations. To analyse the dynamics of cracked beams, the equations of motion are solved in the time domain, via Newmark's method, and the ensuing displacements, velocities and accelerations are examined. For that purpose, time histories, projections of trajectories on phase planes, and Fourier spectra are obtained. It is verified that the breathing crack introduce asymmetries in the response, and that velocities and accelerations can be more affected than displacements by the breathing crack.


Sign in / Sign up

Export Citation Format

Share Document