scholarly journals Estimation of Indonesian Peat Forest Carbon Emissions based on Soil Moisture Active Passive (SMAP) Satellite Image

Agromet ◽  
2019 ◽  
Vol 33 (1) ◽  
pp. 1-7
Author(s):  
A Awaluddin ◽  
Albertus Sulaiman

Calculation of carbon emission in tropical peatland forest still unsolved problem. In this paper, we propose a method to calculate carbon emission by using Soil Moisture Active Passive (SMAP) satellite. The SMAP images on January  2018 enhanced 1.3 radiometer Global Daily 9 km, EASE grid overlayed with peat map. The water table mapping obtained by using empirical relation between soil moisture and water table in January 2018 shows a pattern according to some observation. The carbon emission map on January 2018 shows the average is about 280 gC km-2.

2018 ◽  
Vol 19 (2) ◽  
pp. 472-477
Author(s):  
DWI ASTIANI ◽  
BURHANUDDIN BURHANUDDIN ◽  
EVI GUSMAYANTI ◽  
TRI WIDIASTUTI ◽  
MUHAMMAD J. TAHERZADEH

Astiani D, Burhanuddin, Gusmayanti E, Widiastuti T, Taherzadeh MJ. 2018. Enhancing water levels of degraded, bare, tropical peatland in West Kalimantan, Indonesia: Impacts on CO2 emission from soil respiration. Biodiversitas 19: 472-477. The major drivers of deforestation in West Kalimantan have been the development for large or small-scale expansion of agricultural activities; the establishment of oil palm and other plantations; fire; and degradation of forests particularly from industrial logging. Our previous research findings have shown that such activities in affected peatland areas have lowered the water table levels (down to 0.5-1.0 m depths), and have significantly increased CO2 emissions from the peat soils. It has been demonstrated that unmanaged, lowered water tables in peatlands act as one of the main factors inflating soil carbon emissions - an issue that has assumed global significance in recent decades. Regulating peatland water tables has the potential to mitigate degraded peatland carbon emissions as well as improve the hydrological functions for communities who farm the peatlands. However, we are still uncertain exactly how much impact controlled raising of the peatlands water tables will have on reducing soil CO2 emissions. The research described here aimed to mitigate CO2 emissions by raising and regulating water levels on drained peatland to restore and enhance its hydrological functions. The results confirmed that raising the water table significantly decreases CO2 emissions and improves water availability and management for crop production in the coastal peatland of Kubu Raya district, West Kalimantan. Water levels previously at 60cm below the soil surface were regulated to raise the watertable up to just 30 cm below the surface and this reduced peatland carbon emissions by about 49%. However, longer-term monitoring is required to ensure that the hydrological benefits and CO2 mitigation can be sustained.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


2021 ◽  
Vol 13 (3) ◽  
pp. 1339
Author(s):  
Ziyuan Chai ◽  
Zibibula Simayi ◽  
Zhihan Yang ◽  
Shengtian Yang

In order to achieve the carbon emission reduction targets in Xinjiang, it has become a necessary condition to study the carbon emission of households in small and medium-sized cities in Xinjiang. This paper studies the direct carbon emissions of households (DCEH) in the Ebinur Lake Basin, and based on the extended STIRPAT model, using the 1987–2017 annual time series data of the Ebinur Lake Basin in Xinjiang to analyze the driving factors. The results indicate that DCEH in the Ebinur Lake Basin during the 31 years from 1987 to 2017 has generally increased and the energy structure of DCEH has undergone tremendous changes. The proportion of coal continues to decline, while the proportion of natural gas, gasoline and diesel is growing rapidly. The main positive driving factors affecting its carbon emissions are urbanization, vehicle ownership and GDP per capita, while the secondary driving factor is residents’ year-end savings. Population, carbon intensity and energy consumption structure have negative effects on carbon emissions, of which energy consumption structure is the main factor. In addition, there is an environmental Kuznets curve between DCEH and economic development, but it has not yet reached the inflection point.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3287
Author(s):  
Alireza Tabrizikahou ◽  
Piotr Nowotarski

For decades, among other industries, the construction sector has accounted for high energy consumption and emissions. As the energy crisis and climate change have become a growing concern, mitigating energy usage is a significant issue. The operational and end of life phases are all included in the building life cycle stages. Although the operation stage accounts for more energy consumption with higher carbon emissions, the embodied stage occurs in a time-intensive manner. In this paper, an attempt has been made to review the existing methods, aiming to lower the consumption of energy and carbon emission in the construction buildings through optimizing the construction processes, especially with the lean construction approach. First, the energy consumption and emissions for primary construction materials and processes are introduced. It is followed by a review of the structural optimization and lean techniques that seek to improve the construction processes. Then, the influence of these methods on the reduction of energy consumption is discussed. Based on these methods, a general algorithm is proposed with the purpose of improving the construction processes’ performance. It includes structural optimization and lean and life cycle assessments, which are expected to influence the possible reduction of energy consumption and carbon emissions during the execution of construction works.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 732
Author(s):  
Gusti Z. Anshari ◽  
Evi Gusmayanti ◽  
Nisa Novita

Drainage is a major means of the conversion of tropical peat forests into agriculture. Accordingly, drained peat becomes a large source of carbon. However, the amount of carbon (C) loss from drained peats is not simply measured. The current C loss estimate is usually based on a single proxy of the groundwater table, spatially and temporarily dynamic. The relation between groundwater table and C emission is commonly not linear because of the complex natures of heterotrophic carbon emission. Peatland drainage or lowering groundwater table provides plenty of oxygen into the upper layer of peat above the water table, where microbial activity becomes active. Consequently, lowering the water table escalates subsidence that causes physical changes of organic matter (OM) and carbon emission due to microbial oxidation. This paper reviews peat bulk density (BD), total organic carbon (TOC) content, and subsidence rate of tropical peat forest and drained peat. Data of BD, TOC, and subsidence were derived from published and unpublished sources. We found that BD is generally higher in the top surface layer in drained peat than in the undrained peat. TOC values in both drained and undrained are lower in the top and higher in the bottom layer. To estimate carbon emission from the top layer (0–50 cm) in drained peats, we use BD value 0.12 to 0.15 g cm−3, TOC value of 50%, and a 60% conservatively oxidative correction factor. The average peat subsidence is 3.9 cm yr−1. The range of subsidence rate per year is between 2 and 6 cm, which results in estimated emission between 30 and 90 t CO2e ha−1 yr−1. This estimate is comparable to those of other studies and Tier 1 emission factor of the 2013 IPCC GHG Inventory on Wetlands. We argue that subsidence is a practical approach to estimate carbon emission from drained tropical peat is more applicable than the use of groundwater table.


Author(s):  
Dede Long ◽  
Grant H. West ◽  
Rodolfo M. Nayga

Abstract The agriculture and food sectors contribute significantly to greenhouse gas emissions. About 15 percent of food-related carbon emissions are channeled through restaurants. Using a contingent valuation (CV) method with double-bounded dichotomous choice (DBDC) questions, this article investigates U.S. consumers’ willingness to pay (WTP) for an optional restaurant surcharge in support of carbon emission reduction programs. The mean estimated WTP for a surcharge is 6.05 percent of an average restaurant check, while the median WTP is 3.64 percent. Our results show that individuals have a higher WTP when the surcharge is automatically added to restaurant checks. We also find that an information nudge—a short climate change script—significantly increases WTP. Additionally, our results demonstrate that there is heterogeneity in treatment effects across consumers’ age, environmental awareness, and economic views. Our findings suggest that a surcharge program could transfer a meaningful amount of the agricultural carbon reduction burden to consumers that farmers currently shoulder.


2012 ◽  
Vol 524-527 ◽  
pp. 2474-2481
Author(s):  
Zhi Gang Huang ◽  
Jiao Ling Xie ◽  
Wen Ping Wu

Carbon emissions permits has its own particularity,and with the development of carbon finance,carbon emissions permits possess the commodity attributes and financial attributes.So its price isn’t determined only by the relationship of commodity supply and demand,but also affected by a variety of factors.But because the transaction data is not available,so the pricing of the carbon emissions permits can not really consider from the angle of the influencing factors of price.Therefore, this paper is on the basis of previous studies using mathematical tools and introducing the option pricing mechanism to study th pricing of China's carbon emissions permits basing on carbon emissions,which is designed for providing reference on the pricing of China's carbon emissions,being of both theoretical and practical significance.


Sign in / Sign up

Export Citation Format

Share Document