scholarly journals GRAIN-SIZE STATISTICAL PARAMETERS OF SANDY SEDIMENT IN KUALA GIGIENG, ACEH BESAR DISTRICT

Author(s):  
Syahrul Purnawan ◽  
Haekal A. Haridhi ◽  
Ichsan Setiawan ◽  
. Marwantim

Study of sediment distribution at Kuala Gigieng was to assess the information of sediment related to the occurrence of hydro-oceanographic processes. The sediment samples were collected from nine stations using coring method. Granulometric method was used to analyze the grain size distributions. The results showed different sediment distribution patterns in each area at estuary Kuala Gigieng. The outer area of estuary indicated skewed to coarse grains, while at the inner area of estuary indicated skewed to fine grains. Different sediment load transport process was suggested as the cause of differentiated sediment characters.   Keywords: granulometry, grain size, sediment statistic, Kuala Gigieng

2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Syahrul Purnawan ◽  
Haekal A. Haridhi ◽  
Ichsan Setiawan ◽  
. Marwantim

<p><em>Study of sediment distribution at Kuala Gig</em><em>i</em><em>eng was to assess the information of sediment related to the occurrence of</em><em> </em><em>hydro-oceanographic processes. The sediment samples were collected from nine stations using coring method. Granulometri</em><em>c</em><em> method was used to analyze the grain size distributions. The results showed different sediment distribution patterns in each area at estuary Kuala Gig</em><em>i</em><em>eng. The outer area of estuary indicated skewed to coarse grains, while at the inner area of estuary indicat</em><em>e</em><em>d skewed to fine grains. Different sediment load transport process was suggested as the cause of differentiate</em><em>d</em><em> sediment characters.</em><em> </em></p> <p> </p> <strong><em>Keywords: </em></strong><em>granulometry, grain size, sediment statistic, Kuala Gigieng</em>


2020 ◽  
Vol 156 ◽  
pp. 02012
Author(s):  
Fuji Asema

It is well known that earthquake-induced liquefaction can cause remarkable damage to buildings. A recent disaster involving liquefaction in Palu damaged buildings and infrastructure and has become the focus of many researchers. Detailed study of liquefaction is necessary in order to have a good understanding and direct mitigation efforts for the future. In this study, the liquefaction potential of sands with various grain size distributions was analyzed. The research was experimental using a laboratory sieve shaker. The samples were taken from six areas near important facilities. From this, the relationship between grain distribution and liquefaction potential could be plotted and this information could become an important input for liquefaction mitigation efforts in sandy sediment areas.


Author(s):  
Mo Ji ◽  
Martin Strangwood ◽  
Claire Davis

AbstractThe effects of Nb addition on the recrystallization kinetics and the recrystallized grain size distribution after cold deformation were investigated by using Fe-30Ni and Fe-30Ni-0.044 wt pct Nb steel with comparable starting grain size distributions. The samples were deformed to 0.3 strain at room temperature followed by annealing at 950 °C to 850 °C for various times; the microstructural evolution and the grain size distribution of non- and fully recrystallized samples were characterized, along with the strain-induced precipitates (SIPs) and their size and volume fraction evolution. It was found that Nb addition has little effect on recrystallized grain size distribution, whereas Nb precipitation kinetics (SIP size and number density) affects the recrystallization Avrami exponent depending on the annealing temperature. Faster precipitation coarsening rates at high temperature (950 °C to 900 °C) led to slower recrystallization kinetics but no change on Avrami exponent, despite precipitation occurring before recrystallization. Whereas a slower precipitation coarsening rate at 850 °C gave fine-sized strain-induced precipitates that were effective in reducing the recrystallization Avrami exponent after 50 pct of recrystallization. Both solute drag and precipitation pinning effects have been added onto the JMAK model to account the effect of Nb content on recrystallization Avrami exponent for samples with large grain size distributions.


1999 ◽  
Vol 580 ◽  
Author(s):  
G.D. Hibbard ◽  
U. Erb ◽  
K.T. Aust ◽  
G. Palumbo

AbstractIn this study, the effect of grain size distribution on the thermal stability of electrodeposited nanocrystalline nickel was investigated by pre-annealing material such that a limited amount of abnormal grain growth was introduced. This work was done in an effort to understand the previously reported, unexpected effect, of increasing thermal stability with decreasing grain size seen in some nanocrystalline systems. Pre-annealing produced a range of grain size distributions in materials with relatively unchanged crystallographic texture and total solute content. Subsequent thermal analysis of the pre-annealed samples by differential scanning calorimetry showed that the activation energy of further grain growth was unchanged from the as-deposited nanocrystalline nickel.


2021 ◽  
Author(s):  
◽  
Anna Borisovna Albot

<p>Grain size analysis of the terrigenous fraction of a laminated diatom ooze dating back to 11.4 kyr recovered offshore Adélie Land, East Antarctic margin was used to examine variations in sediment transport, depositional environments and Holocene climate variability at the location. Interpretations were assisted by additional proxies of primary productivity (δ¹³CFA, BSi%), glacial meltwater input (δDFA) and subsurface temperature (TEXL₈₆). Three lithologic intervals with distinct grain size distributions were identified. At ~11.4 ka the diatom ooze has a clear glacimarine influence which gradually decreases until ~8.2 ka. During this time interval, coincident with the early Holocene warm period, sediment is inferred to have been delivered by glacial meltwater plumes and ice-bergs in a calving bay environment. It is suggested that the glaciers in Adélie Land had retreated to their present day grounding lines by 8.2 ka, and from then on sediment was delivered to the site primarily via the Antarctic Coastal and Slope Front Currents, largely through a suspended sediment load and erosion of the surrounding banks. Enhanced biogenic mass accumulation rates and primary production at 8.2 ka suggest onset of warmer climatic conditions, coincident with the mid-Holocene Climatic Optimum.  At ~4.5 ka, grain size distributions show a rapid increase in mud content coincident with a transient pulse of glacial meltwater and a sudden decrease in biogenic and terrigenous mass accumulation rates. The increased mud content is inferred to have been deposited under a reduced flow regime of the Antarctic Coastal and Slope Front Currents during the Neoglacial period that followed the final stages of deglaciation in the Ross Sea. It is hypothesised here that cessation of glacial retreat in the Ross Sea and the development of the modern day Ross Sea polynya resulted in enhanced Antarctic Surface Water production which led to increased sea ice growth in the Adélie Land region. The presence of sea ice led to reduced primary production and a decrease in the maximum current strength acting to advect coarser-sized terrigenous sediment to the core site during this time.  Sedimentation rates appear to have a strong correlation with the El Niño Southern Oscillation (ENSO) over the last 8.2 kyr, and are inferred to be related to changing sea ice extent and zonal wind strength. Light laminae counts (biogenic bloom events) appear to decrease in frequency during time intervals dominated by El Niño events. Spectral analysis of the greyscale values of core photographs reveals peaks in the 2-7 year band, known ENSO periods, which increase in frequency in the mid-and-late Holocene. Spectral analyses of the sand percent and natural gamma ray (NGR, a measure of clay mineral input) content of the core reveal peaks in the ~40-60, 200-300, 600, 1200-1600 and 2200-2400 year bands. The most significant of these cycles in the NGR data is in 40-60 year band may be related to internal mass balance dynamics of the Mertz Glacier or to the expansion and contraction of the Antarctic circumpolar vortex. Cycles in the 200-300 and 2200-2400 year bands are related to known periods of solar variability, which have previously been found to regulate primary productivity in Antarctic coastal waters. Cycles in the 590-625 and 1200-1600 year bands have a strong signal through the entire record and are common features of Holocene climatic records, however the origin of these cycles is still under debate between solar forcing and an independent mode of internal ocean oscillation.</p>


Sign in / Sign up

Export Citation Format

Share Document