PERBANDINGAN ARIMA DAN ARTIFICIAL NEURAL NETWORKS DALAM PERAMALAN JUMLAH POSITIF COVID-19 DI DKI JAKARTA

2021 ◽  
Vol 10 (3) ◽  
pp. 288-301
Author(s):  
Tri Wahyuni ◽  
Indahwati Indahwati ◽  
Kusman Sadik

DKI Jakarta is the center of the spread of Covid-19. This is indicated by the higher cumulative number of Covid-19 positive in DKI Jakarta compared to other provinces. The high number of cases in DKI Jakarta is a concern for all groups, so it is necessary to do forecasting to predict the number of Covid-19 positive in the next period. Accurate forecasting is needed to get better results. This study compares the Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN) methods in predicting the number of Covid-19 positive in DKI Jakarta. Forecasting accuracy is calculated using the value of Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and correlation. The results show that the best model for forecasting the number of Covid-19 positive in DKI Jakarta is ARIMA(0,1,1) with drift, with a MAPE value of 15.748, an RMSE of 268.808, and the correlation between the forecast value and the actual value of 0.845. Forecasting using ARIMA(0,1,1) with drift and BP(3,10,1) models produces the best forecast for the long forecasting period of the next six weeks.

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4572
Author(s):  
Ioannis O. Vardiambasis ◽  
Theodoros N. Kapetanakis ◽  
Christos D. Nikolopoulos ◽  
Trinh Kieu Trang ◽  
Toshiki Tsubota ◽  
...  

In this study, the growing scientific field of alternative biofuels was examined, with respect to hydrochars produced from renewable biomasses. Hydrochars are the solid products of hydrothermal carbonization (HTC) and their properties depend on the initial biomass and the temperature and duration of treatment. The basic (Scopus) and advanced (Citespace) analysis of literature showed that this is a dynamic research area, with several sub-fields of intense activity. The focus of researchers on sewage sludge and food waste as hydrochar precursors was highlighted and reviewed. It was established that hydrochars have improved behavior as fuels compared to these feedstocks. Food waste can be particularly useful in co-hydrothermal carbonization with ash-rich materials. In the case of sewage sludge, simultaneous P recovery from the HTC wastewater may add more value to the process. For both feedstocks, results from large-scale HTC are practically non-existent. Following the review, related data from the years 2014–2020 were retrieved and fitted into four different artificial neural networks (ANNs). Based on the elemental content, HTC temperature and time (as inputs), the higher heating values (HHVs) and yields (as outputs) could be successfully predicted, regardless of original biomass used for hydrochar production. ANN3 (based on C, O, H content, and HTC temperature) showed the optimum HHV predicting performance (R2 0.917, root mean square error 1.124), however, hydrochars’ HHVs could also be satisfactorily predicted by the C content alone (ANN1, R2 0.897, root mean square error 1.289).


2020 ◽  
Vol 11 (29) ◽  
pp. 114-128
Author(s):  
Ali Mahdavi ◽  
Mohsen Najarchi ◽  
Emadoddin Hazaveie ◽  
Seyed Mohammad Mirhosayni Hazave ◽  
Seyed Mohammad Mahdai Najafizadeh

Neural networks and genetic programming in the investigation of new methods for predicting rainfall in the catchment area of the city of Sari. Various methods are used for prediction, such as the time series model, artificial neural networks, fuzzy logic, fuzzy Nero, and genetic programming. Results based on statistical indicators of root mean square error and correlation coefficient were studied. The results of the optimal model of genetic programming were compared, the correlation coefficients and the root mean square error 0.973 and 0.034 respectively for training, and 0.964 and 0.057 respectively for the optimal neural network model. Genetic programming has been more accurate than artificial neural networks and is recommended as a good way to accurately predict.


2016 ◽  
Vol 5 (2) ◽  
pp. 51 ◽  
Author(s):  
Alexander K White ◽  
Samir K Safi

<p>We compare three forecasting methods, Artificial Neural Networks (ANNs), Autoregressive Integrated Moving Average (ARIMA) and Regression models. Using computer simulations, the major finding reveals that in the presence of autocorrelated errors ANNs perform favorably compared to ARIMA and regression for nonlinear models. The model accuracy for ANN is evaluated by comparing the simulated forecast results with the real data for unemployment in Palestine which were found to be in excellent agreement.</p>


2020 ◽  
Vol 8 (1) ◽  
pp. 19-39
Author(s):  
Maja Gregorić ◽  
Tea Baldigara

The purpose of this paper is to design an artificial neural network in the attempt to define the data generating process of the number of German tourist arrivals in Croatia considering the strong seasonal character of empirical data. The presence of seasonal unit roots in tourism demand determinants is analysed using the approach developed by Hylleberg, Engle, Granger and Yoo – Hegy test. The study is based on seasonality analysis and Artificial Neural Networks approach in building a model which intend to describe the behaviour of the German tourist flows to Croatia. Different neural network architectures were trained and tested, and after the modelling phase, the forecasting accuracy and model performances were analysed. Model performance and forecasting accuracy evaluation was tested using the mean absolute percentage error. Based on the augmented HEGY test procedure it can be concluded the German tourist arrivals to the Republic of Croatia have nonstationary behaviour associated with the zero frequency and seasonal frequency. Taking this into consideration, in the analysis of the phenomenon it is necessary to consider its seasonal character. Given the importance of the tourism for Croatian economic development, the research results could be useful, for both, researchers and practitioners, in the process of planning and routing the future Croatian hotel industry development and improvement of business performances.


2020 ◽  
Vol 33 (4) ◽  
pp. 110
Author(s):  
Layla A. Ahmed

    Artificial Neural Network (ANN) is widely used in many complex applications. Artificial neural network is a statistical intelligent technique resembling the characteristic of the human neural network.  The prediction of time series from the important topics in statistical sciences to assist administrations in the planning and make the accurate decisions, so the aim of this study is to analysis the monthly hypertension in Kalar for the period (January 2011- June 2018) by applying an autoregressive –integrated- moving average model  and artificial neural networks and choose the best and most efficient model for patients with hypertension in Kalar through the comparison between neural networks and Box- Jenkins models on a data set for predict. Comparisons between the models has been performed using Criterion indicator Akaike information Criterion, mean square of error,  root mean square of error, and mean absolute percentage error, concluding that the prediction for patients with hypertension by using artificial neural networks model is the best.


2021 ◽  
Vol 52 (1) ◽  
pp. 6-14
Author(s):  
Amit Tak ◽  
Sunita Dia ◽  
Mahendra Dia ◽  
Todd Wehner

Background: The forecasting of Coronavirus Disease-19 (COVID-19) dynamics is a centrepiece in evidence-based disease management. Numerous approaches that use mathematical modelling have been used to predict the outcome of the pandemic, including data-driven models, empirical and hybrid models. This study was aimed at prediction of COVID-19 evolution in India using a model based on autoregressive integrated moving average (ARIMA). Material and Methods: Real-time Indian data of cumulative cases and deaths of COVID-19 was retrieved from the Johns Hopkins dashboard. The dataset from 11 March 2020 to 25 June 2020 (n = 107 time points) was used to fit the autoregressive integrated moving average model. The model with minimum Akaike Information Criteria was used for forecasting. The predicted root mean square error (PredRMSE) and base root mean square error (BaseRMSE) were used to validate the model. Results: The ARIMA (1,3,2) and ARIMA (3,3,1) model fit best for cumulative cases and deaths, respectively, with minimum Akaike Information Criteria. The prediction of cumulative cases and deaths for next 10 days from 26 June 2020 to 5 July 2020 showed a trend toward continuous increment. The PredRMSE and BaseRMSE of ARIMA (1,3,2) model were 21,137 and 166,330, respectively. Similarly, PredRMSE and BaseRMSE of ARIMA (3,3,1) model were 668.7 and 5,431, respectively. Conclusion: It is proposed that data on COVID-19 be collected continuously, and that forecasting continue in real time. The COVID-19 forecast assist government in resource optimisation and evidence-based decision making for a subsequent state of affairs.


2021 ◽  
Author(s):  
özlem karadag albayrak

Abstract Turkey attaches particular importance to energy generation by renewable energy sources in order to remove negative economic, environmental and social effects caused by fossil resources in energy generation. Renewable energy sources are domestic and do not have any negative effect, such as external dependence in energy and greenhouse gas, caused by fossil resources and which constitute a threat for sustainable economic development. In this respect, the prediction of energy amount to be generated by Renewable Energy (RES) is highly important for Turkey. In this study, a generation forecasting was carried out by Artificial Neural Networks (ANN) and Autoregressive Integrated Moving Average (ARIMA) methods by utilising the renewable energy generation data between 1965-2019. While it was predicted by ANN that 127.516 TWh energy would be generated in 2023, this amount was estimated to be 45.457 TeraWatt Hour (TWh) by ARIMA (1.1.6) model. The Mean Absolute Percentage Error (MAPE) was calculated in order to specify the error margin of the forecasting models. This value was determined to be 13.1% by ANN model and 21.9% by ARIMA model. These results suggested that the ANN model provided a more accurate result. It is considered that the conclusions achieved in this study will be useful in energy planning and management.


Author(s):  
Behzad Vaferi

Nanofluids have recently been considered as one of the most popular working fluid in heat transfer and fluid mechanics. Accurate estimation of thermophysical properties of nanofluids is required for the investigation of their heat transfer performance. Thermal conductivity coefficient, convective heat transfer coefficient, and viscosity are some the most important thermophysical properties that directly influence on the application of nanofluids. The aim of the present chapter is to develop and validate artificial neural networks (ANNs) to estimate these thermophysical properties with acceptable accuracy. Some simple and easy measurable parameters including type of nanoparticle and base fluid, temperature and pressure, size and concentration of nanoparticles, etc. are used as independent variables of the ANN approaches. The predictive performance of the developed ANN approaches is validated with both experimental data and available empirical correlations. Various statistical indices including mean square errors (MSE), root mean square errors (RMSE), average absolute relative deviation percent (AARD%), and regression coefficient (R2) are used for numerical evaluation of accuracy of the developed ANN models. Results confirm that the developed ANN models can be regarded as a practical tool for studying the behavior of those industrial applications, which have nanofluids as operating fluid.


Sign in / Sign up

Export Citation Format

Share Document