scholarly journals Evaluating the presentation of blaCTX-M, blaTEM, and blaSHV resistance genes in Escherichia coli isolated from animal food sources in Tonekabon city and determination of their antibiotic resistance profile

2019 ◽  
Vol 29 (1) ◽  
pp. 56-63
Author(s):  
Shiva Khajavi ◽  
Zoheir Heshmatipour ◽  
Akram Sadat Tabatabaee Bafroee ◽  
◽  
◽  
...  
Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 575
Author(s):  
Emi Nishimura ◽  
Masateru Nishiyama ◽  
Kei Nukazawa ◽  
Yoshihiro Suzuki

Information on the actual existence of antibiotic-resistant bacteria in rivers where sewage, urban wastewater, and livestock wastewater do not load is essential to prevent the spread of antibiotic-resistant bacteria in water environments. This study compared the antibiotic resistance profile of Escherichia coli upstream and downstream of human habitation. The survey was conducted in the summer, winter, and spring seasons. Resistance to one or more antibiotics at upstream and downstream sites was on average 18% and 20%, respectively, and no significant difference was observed between the survey sites. The resistance rates at the upstream site (total of 98 isolated strains) to each antibiotic were cefazolin 17%, tetracycline 12%, and ampicillin 8%, in descending order. Conversely, for the downstream site (total of 89 isolated strains), the rates were ampicillin 16%, cefazolin 16%, and tetracycline 1% in descending order. The resistance rate of tetracycline in the downstream site was significantly lower than that of the upstream site. Furthermore, phylogenetic analysis revealed that many strains showed different resistance profiles even in the same cluster of the Pulsed-Field Gel Electrophoresis (PFGE) pattern. Moreover, the resistance profiles differed in the same cluster of the upstream and the downstream sites. In flowing from the upstream to the downstream site, it is plausible that E. coli transmitted or lacked the antibiotic resistance gene.


2019 ◽  
Vol 12 (11) ◽  
pp. 1840-1848 ◽  
Author(s):  
Nacima Meguenni ◽  
Nathalie Chanteloup ◽  
Angelina Tourtereau ◽  
Chafika Ali Ahmed ◽  
Saliha Bounar-Kechih ◽  
...  

Background and Aim: Avian pathogenic Escherichia coli cause extensive mortality in poultry flocks, leading to extensive economic losses. To date, in Algeria, little information has been available on virulence potential and antibiotics resistance of avian E. coli isolates. Therefore, the aim of this study was the characterization of virulence genes and antibiotic resistance profile of Algerian E. coli strains isolated from diseased broilers. Materials and Methods: In this study, 43 avian E. coli strains isolated from chicken colibacillosis lesions at different years were analyzed to determine their contents in 10 virulence factors by polymerase chain reaction, antimicrobial susceptibility to 22 antibiotics belonging to six different chemical classes and genomic diversity by pulsed-field gel electrophoresis (PFGE). Results: Mainly E. coli isolates (58.1%) carried two at six virulence genes and the most frequent virulence gene association detected were ompT (protectin), hlyF (hemolysin) with 55.8% (p<0.001), and iroN, sitA (iron acquisition/uptake systems), and iss (protectin) with 41.8% (p<0.001). Some strains were diagnosed as virulent according to their virulence gene profile. Indeed, 23.25% of the isolates harbored iroN, ompT, hlyF, iss, and sitA combination, 14% ompT, hlyF, and frzorf4 (sugar metabolism), and 11,6% iroN, hlyF, ompT, iss, iutA (iron acquisition/uptake systems), and frzorf4. The chicken embryo lethality assay performed on five isolates confirmed the potential virulence of these strains. All isolates submitted to PFGE analysis yielded different genetic profiles, which revealed their diversity. Overall, 97.2% of the isolates were resistant to at least one antibiotic and 53.5% demonstrated multi-antimicrobial resistance to three different antimicrobial classes. The highest resistance levels were against nalidixic acid (83.4%), amoxicillin and ampicillin (83.3%), ticarcillin (80.5%), pipemidic acid (75%), and triméthoprim-sulfamethoxazole (66.6%). For beta-lactam class, the main phenotype observed belonged to broad-spectrum beta-lactamases. However, extended-spectrum beta-lactamase associated with three at six virulence factors was also detected in 13 isolates. Two of them were attested virulent as demonstrated in the embryo lethality test which constitutes a real public threat. Conclusion: It would be imperative in avian production to discourage misuse while maintaining constant vigilance guidelines and regulations, to limit and rationalize antimicrobial use.


2021 ◽  
Vol 2 (2) ◽  
pp. 37-43
Author(s):  
Adaeze Joy Alu ◽  
Gabriel K. Omeiza ◽  
James A. Ameh ◽  
Enem S.I

Most Escherichia coli strains are harmless intestinal bacteria of animals, but some are implicated in food infection/poisoning especially Shiga toxin (or Vero toxin) producing E. coli (STEC) due to consumption of meat. This study was conducted to determine the prevalence and antibiotic resistance profile of Shigatoxigenic Escherichia coli O157 (STEC) from retailed miscellaneous fish and meat types in Abuja, Federal Capital Territory, Nigeria. A total of 256 meat and fish consisting of cow muscles, intestines, rumen-sacs, livers and tails, cat-fish, frozen fish (mackerel and herrings) were examined. Escherichia coli were isolated by enrichment culture cefixime-tellurite sorbitol MacConkey agar (CT-SMAC), morphological, biochemical, serotype latex agglutination and disk diffusion methods. Of the 256 samples, 138 (53.9%) were contaminated with E. coli and 28 (21.7%) E. coli strains were positive for Shigatoxigenic Escherichia coli O157 (STEC). Meat muscles had the highest prevalence of STEC (7.41%) among meat samples, followed by rumen-sacs (6.0%), intestines (5.77%), tails (4.0%), and the prevalence of STEC in Fish includes Cat-fish intestine (26.7%), skin (21.4%), Mackerel intestine (26.7%), skin (14.3%), and Herrings skin (15.4%), gill (7.1%). All the STEC assessed indicated multi-drug resistance, with the isolates showing 100% resistant to ampicilin, and erythromycin, nitrofurantoin (95.7%), amoxicilin clavulanic acid (84.3%), sulphamethaxazole/trimethoprim (75%), streptomycin (75%), tetracycline (66.17%), and gentamycin (53.6%). The isolates were susceptible to ciprofloxacin (66.7%), Cefoxitin (66.7%), amikacin (39.3%), and chloramphenicol (35.7%). The implication of STEC in this study suggests that contaminated meat types are sold to consumers and can result to serious foodborne hazards. Prescription of ciprofloxacin and cefoxicilin are recommended against this organism. Application of good hygienic procedures in meat and fish handling processes and proper boiling before consumption can mitigate the risk of infection due to resistance STEC strains.


Author(s):  
Farzad Esavand Heydari ◽  
Mojtaba Bonyadian ◽  
Hamdallah Moshtaghi ◽  
Masoud Sami

Background and Objectives: Enterohemorrhagic Escherichia coli (EHEC) causes bloody and non-bloody diarrhea, intestinal infection and extraintestinal complications in humans. This study aimed to isolate and evaluate the prevalence of E. coli O157: H7 and other Shiga toxin-producing E. coli (STEC) and identify the virulence genes (stx1, stx2, hly and eaeA) from patients with diarrhea. Also, the antibiotic resistance profile of the isolated strains was evaluated. Materials and Methods: A total of 100 stool samples were collected from patients with acute diarrhea referring to the hospital and clinics in Isfahan County, Iran. Phenotypic tests and PCR assay were used for detection of E. coli O157: H7 and other Shiga toxin-producing E. coli. The presence of virulence genes (stx1, stx2, hly and eaeA) were identified by PCR. The antibiotic resistance profile of the isolates was determined using the agar disk diffusion method. The results were analyzed descriptively by Sigma stat version 4 software. Results: Seventy - eight out of 100 samples (78%) were contaminated with E. coli. E. coli O157 was isolated from five samples (6.4%), of which only two strains (2.56%) were identified as E. coli O157: H7. According to the results, out of two E. coli O157: H7 isolates, one (50%) isolate contained eaeA and two isolates (100%) contained Stx1, Stx2, hlyA genes. Out of three (3.84%) E. coli O157: HN, one of the isolate (33.3%) contained stx1 and, two isolates (66.7%) were positive for hlyA genes. Also, the results revealed that six strains (7.69%) were non-O157: H7 STEC, of which two isolates (33.3%) contained stx1 and four isolates (66.7%) were positive for stx2 and hlyA genes. The results of antibiogram tests revealed that all of the STEC isolates (100%) were sensitive to imipenem followed by kanamycin, gentamicin and nitrofurantoin (91%). High resistance (54.5%) to ampicillin and ciprofloxacin was observed among the STEC isolates. Conclusion: The results of the current study showed that although the prevalence of E. coli O157: H7 was low among patients with diarrhea, the other STEC strains with relative resistance to antibiotics are more prevalent.


2020 ◽  
Vol 23 (2) ◽  
pp. 219-223
Author(s):  
Lucian Giubelan ◽  
◽  
Iulian Diaconescu ◽  
Livia Dragonu ◽  
Andreea Cristina Stoian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document