scholarly journals ANALISIS SIFAT PENYERAPAN AIR DAN INDEKS NYALA API PADA PAPAN KOMPOSIT YANG DI PERKUAT SERAT DAUN PANDAN DURI DAN LIMBAH SERBUK GERGAJI KAYU SENGON DENGAN RESIN POLYESTER

2015 ◽  
Vol 5 (2) ◽  
Author(s):  
Saiful Bachtiar ◽  
Emmy Dyah Sulistyowati ◽  
Agus Dwi Catur

The use of composite materials as an alternative to metallic materials in the field of engineering more widespread, not only as an interior daneksterior in the automotive field but also extended to other areas such as property and architecture is to reduce the incidence of fire one only to find a replacement for wood as a raw material of houses and buildings with other alternative materials are more fire resistant, the material need not be limited in mechanical strength, but also on the physical properties. Therefore, the aim of this study was to analyze the absorption properties of water and fire index in the fiber-reinforced composite board pandanus leaves thorns and wood sawdust filler sengon with polyester resin as matriknya.Analysis of the absorption properties of the water carried by the ASTM D 5529 with a variation of the length of time of immersion (10, 20, and 30 days) and the fiber volume fraction (0%, 10%, 20% and 30%). Testing index of the flame using ASTM E1321 with long burning time of 10 minutes. To test the effect of soaking time and a fiber volume fraction of the weight gain, volume, and density on the board fiber composite pandanus thorns with 10% filler wood sawdust sengon diguanakn Two Ways Analysis Of Variance, and the effect of fiber volume fraction to index Flash Fire is used One Ways Analysis Of Variance.The results showed that the water absorption is affected by fiber volume fraction and longer soaking time. The largest percentage of water absorption occurs in the volume fraction of 30% with long soaking time of 30 days is 24.41%. Similarly, the highest percentage swelling occurs in composite board with a volume fraction of 30% with a 30-day long soaking time is 11:22% .Then the flame to the percentage of the index without fiber composite board has a greater percentage is 167.03%. By contrast the percentage of board composite index gained shortest of composite board with a fiber volume fraction of 30% ie 70.25% composite board with a fiber volume fraction of 30% also have a flame index is lower than the comparison is with wood composites sengon.

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
I Putu Krishna Artha Sastra ◽  
Nasmi Herlina Sari ◽  
S. Sujita

The purpose of this study is to investigate and analyze about absorption properties of the composite laminate, microstructure hybrid sisal and banana fiber with epoxy matrix. Composite manufacturing was done by hand lay-up method with a ratio of fiber volume fraction of sisal and banana trunks 0:40, 10:30, 15:25, 20:20, 30:10, 40:0 (%) With direction of sisalana agave fiber orientation and banana fiber by fiber length according to the mold. Specimen testing was done by the water absorption test with the standard ASTM D571-8,. Test results obtained from the average water absorption properties of composites with the highest ratio of fiber volume fraction of 40%: 0% is 42.4% while the lowest average water absorption properties contained in the composite with fiber volume fraction of 0%: 40%, with percentage of 11.5%. Therefore we can conclude the increasing volume fraction of sisal fiber withidirection of  fiber orientation, the lower of water absorption properties and conversely increasing the volume of woven banana fiber orientation, the higher of water absorptionproperties.


Author(s):  
Jessica N. McClay ◽  
Peter Joyce ◽  
Andrew N. Smith

Measurements of the in-plane thermal conductivity and the directional dependence of Mitsubishi K63B12 pitch-fiber/Epoxy composite from Newport Composites are reported. This composite is being explored for use in the Avanced Seal Delivery System for effective thermal management. The thermal conductivity was measured using a steady state technique. The experimental results were then compared to a model of the thermal conductivity based on the direction of the fibers. These estimates are based on the properties of the constituent materials and volume of fibers in the sample. Therefore the density and the fiber volume fraction were experimentally measured. The thermal conductivity is clearly greatest in the direction of the fibers and decreases as the fibers are rotated off axis. In the case of pitch fiber composite materials, the contribution of the fibers to the thermal conductivity dominates. The experimental data clearly followed the correct trends; however, the measured values were 25% to 35% lower than predicted.


2011 ◽  
Vol 45 (26) ◽  
pp. 2727-2742 ◽  
Author(s):  
Vishwanath R. Kedari ◽  
Basil I. Farah ◽  
Kuang-Ting Hsiao

Vacuum-assisted resin transfer molding (VARTM) process is one of the liquid composite molding (LCM) processes aimed at producing high-quality composite parts. The void content and fiber volume fraction of a VARTM part can be affected by many parameters and is critical to the mechanical properties and the quality of the part. In this paper, a series of experiments were conducted with a heated dual pressure control VARTM setup for investigating the effects of vacuum pressure, inlet pressure, and mold temperature on the void content and fiber volume fraction of polyester/E-glass fiber composite. It was found that stronger vacuum and higher mold temperature can better control and increase the fiber volume fraction; however, such a combination of strong vacuum and high mold temperature may also require a reduced inlet pressure for minimizing the void content. The need of pressure reduction can be explained with the compatibility between Darcy's flow and capillary flow in the fiber preform and can be calculated based on the room temperature VARTM results. The experimental results suggest that high mold temperature, high vacuum, and appropriately reduced inlet pressure can produce a VARTM part with high fiber volume fraction and low void content.


2012 ◽  
Vol 560-561 ◽  
pp. 830-836 ◽  
Author(s):  
Bi Qin Dong ◽  
Feng Xing ◽  
Hong Zhi Cui ◽  
Zong Jin Li

In this article, study results of the electrical resistance properties of cement/carbon fiber composite are presented. Using a normal mixing and compacting method, up to 0.85v.% short carbon fiber can be easily incorporated into the cement composite. And its electrical resistivity properties are measured. The resistivity of specimens decreases greatly with the volume fraction of fibers increasing. Moreover, it is found that there is a saturation point for fiber volume fraction. Beyond that, the change of resistivity with the variation of fiber volume fraction becomes much flat. Another interest finding is that the resistivity of the cement materials is a function of frequency of applied voltage. The microstructure associated with the electrical properties of composite is observed. It is possible to apply cement/carbon fiber composite as an electromagnetic shielding composite and so on.


2016 ◽  
Vol 37 (19) ◽  
pp. 1202-1216 ◽  
Author(s):  
Alejandra Constante ◽  
Selvum Pillay

The demand for natural fiber composites in the automotive industry in both Europe and the United States has been forecasted to increase in the coming years. The natural fiber composites based on highly commercialized fibers such as flax, hemp, and sisal has grown to become an important sector of polymeric composites. However, little attention has been addressed to expanding natural fiber composites to include new sources of emerging natural reinforcements, such as reclaimed algae fibers, that have a multiple environmental benefits. Not only are extracted algae fibers biodegradable, the reclamation process has the added benefit of restoring health of waterways choked with algae. This study focuses on the processability of algae fiber–epoxy composites. Short fibers, chemically extracted from raw reclaimed algae, were prepared for natural fiber composite products in two ways. First, randomly oriented mats were produced using the wet-laid process to create layered, compression-molded laminates. Second, loose fibers were dispersed directly into the thermoset matrix to produce a bulk molding compound that was further compression molded into composite lamina. The effect of processing variables such as compaction pressure, temperature, and time were addressed. Moreover, the effect of fiber volume fraction ( υf) and fiber form were considered. Enhanced mechanical properties were found when 56% υf algae fiber was used for the compression-molded laminates composite. This variant exhibited an improvement on the flexural and tensile modulus of 70% and 86% when compared to the neat epoxy. However, the volume of porosity on the same variant was 11% due to lack of compression in some of the fibers. The effect of porosity on the theoretical stiffness was estimated by using the Cox–Krenchel model. Furthermore, an empirical exponential model was formulated to characterize the multi-scale effect of compaction pressure on the overall fiber volume fraction, υf.


1990 ◽  
Vol 43 (5S) ◽  
pp. S294-S303 ◽  
Author(s):  
M. Taya ◽  
M. Dunn ◽  
B. Derby ◽  
J. Walker

Residual stress induced in a misoriented short fiber composite due to thermal expansion mismatch between the matrix and fiber is investigated. The case of two-dimensional in-plane fiber misorientation is considered. The elastic model that is developed is based on Eshelby’s equivalent inclusion method and is unique in that it accounts for interactions among fibers at different orientations. A parametric study is performed to demonstrate the effects of fiber volume fraction, fiber aspect ratio, fiber distribution cut-off angle, and fiber distribution type on thermal residual stress. Fiber volume fraction and aspect ratio are shown to have more significant effects on the magnitude of the thermal residual stresses than the fiber distribution type and cut-off angle.


Sign in / Sign up

Export Citation Format

Share Document