scholarly journals Perencanaan Sistem Penyaliran dan Pemompaan pada Tambang Terbuka di PT X Desa Tegalega, Kecamatan Cigudeg Kabupaten Bogor, Provinsi Jawa Barat

2021 ◽  
Vol 1 (1) ◽  
pp. 39-46
Author(s):  
Mutiara Nur Fajryanti ◽  
Yunus Ashari ◽  
Elfida Moralista

Abstract. PT X is a mining company with open pit mining methods for andesite rocks. The implementation of open pit methods is inseparable from the problem of inclusion water of rainfall and groundwater seepage into the mining area (pit). This can lead to disruption of mining activities if not handled properly. In this case to cope with the incoming water at Pit in PT X requires some study. It deals with the large number of pumps needed to tackle the incoming water each day.The purpose of the research is to overcome the potential of water entering the Pit, by making diversion channels and to overcome water that already inside the Pit is handled by making sump and pumping system.The data used are 2014-2018 rainfall data, topographic maps, mine progress maps, land use maps, water velocity data, temperature and humidity data and soil condition and land conservation data. Pit has 4 Catchment Areas with each divided into 3 namely Catchment Area PIT, Catchment Area A, Catcthment Area B, Catcthment Area C with a total area of 26,28 Ha. The water runoff plan during the 10 years period. From these data the reults obtained amounted to 50,35 m3/day. Water discharge that enters from inside and outside the pit with a total discharge of 0,94 m3 /sec. Based on data that obtained the ways to prevent water entering the mining area can be minimized by creating a diversion channel. The first diversion channel made for prevent water entering the mining area that comes from Catchment Area A, the diversion channel made along 569 m from 300–270 mals. The second one made for prevent water from Catchment Area C with total length 756 m from 290–130 mals. So that the incoming water debit becomes as much as 0,53 m3/sec. Sump is place at an elevation 115 masl, volume of sump is 7.900 m3 with dimensions of surface length 43 m, surface width 50 m, the base length of the is 36 m, and the depth of 4 meters can accommodate the total volume of water. The pump used is a MFC 180 , with a total of 2 unit pump, the pumping hours are adjusted based on the incoming water debit per month. The highest pumping hour in November was 15.2 hours with a debit of 12,403.63 m3 / day and the lowest in May was 6 hours with a discharge of 4,896.17 m3 / day. Abstrak. PT X merupakan salah satu perusahaan pertambangan dengan menggunakan Sistem Tambang Terbuka dengan tipe Quarry untuk batuan andesit. Akan tetapi belum tersedianya sistem penyaliran tambang menyebabkan terjadinya banjir pada lokasi penambangan, sehingga mengganggu kegiatan penambangan terutama pada musim penghujan. Tujuan dilakukan penelitian adalah untuk menanggulangi potensi air yang masuk ke pit , maka dilakukan penanggulangan air dari luar pit dengan membuat saluran pengalihan dan penanggulangan air yang masuk ke dalam pit dengan sistem pemompaan dan kolam penampungan.Data yang digunakan merupakan data curah hujan tahun 2014-2018, peta topografi, peta kemajuan tambang, peta tataguna lahan, data kecepatan air, suhu dan kelembaban dan data kondisi tanah dan konservasi lahan. Pit memiliki 4 Catchment Area dengan masing-masing dibagi menjadi 4 yaitu Catchment Area PIT, Catchment Area A, Catchment Area B, Catchment Area C dengan total luasan sebesar 26,28 Ha. Curah hujan rencana dengan data curah hujan selama 10 tahun periode 2014-2018. Hasilnya adalah curah hujan rencana maksimum sebesar 50,35 mm/hari. Debit air yang masuk adalah dari dalam pit dan luar pit dengan total debit sebanyak 0,94 m3/detik. Dari hasil penelitian, saluran pengalihan dibuat pada dua lokasi yaitu untuk menangani Catchment Area A dengan total panjang saluran 569 m pada elevasi 300 -270 dan untuk menangani Catchment Area C dengan panjang 756 m pada elevasi 290 - 130. Sehingga debit air yang masuk menjadi sebanyak 0,53 m3/detik.Kolam penampungan dibuat dengan volume 7.900 m3,dengan dimensi panjang atas 43 dan panjang bawah 36 m, dengan lebar 50 m dan ketinggian 4 m. Pompa yang digunakan adalah 2 unit pompa Multiflow 180 dengan jam pemompaan disesuaikan berdasarkan debit air yang masuk perbulannya. Jam pemompaan tertinggi pada bulan November yaitu 15,2 jam dengan debit 12.403,63 m3/hari dan yang paling rendah pada bulan Mei yaitu 6 jam dengan debit 4.896,17 m3/hari.

PROMINE ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 28-33
Author(s):  
A.A Inung Arie Adnyano ◽  
Muhammad Bagaskoro

Coal mining by PT. Tambang Bukit Tambi uses an open pit mining system where one of the factors that can affect mining is water that entering the mining area, so water control must be carried out, one of the ways is by using mine dewatering system. The purpose of this study is 1) To know the debit of water entering the mining area. 2) To design a pumping plan 3) To create an ideal sump design for handling water that entering the mining area. Based on the research, the daily discharge is 32,243.36 m3 / day where the water discharge that can be released by 2  Kenflo XA 125 / 40B pumps is 640 m3 / hour in 50.38 hours and the water control effort is made a sump that must accommodate water amounting to 19,427.26 m3 and after the calculation is obtained a trapezoid-shaped sump design with size length and surface width of 63.7 m, length and width of the base of the sum of 60.9 m and depth of 5 meters.


2021 ◽  
Vol 1 (2) ◽  
pp. 1-7
Author(s):  
Fairus Atika Redanto Putri ◽  
Muhammad Reynaldi

Tebo Agung Internasional Ltd is one of the companies in coal mining that employs the open-pit mining method. This sort of method will create a large basin that can accumulate water inside the mining pit. The drainage system is applied at the Pit-1 Site Semambu is mine-dewatering carried out by draining the water into the sump so that it can be pumped out of the mining area and prevent the runoff from coming inside through an open drainage system (ditch). The result of data analysis demonstrated that referring to the daily rainfall in 2010 – 2019 through the distribution of Log Person Type III, the maximum rainfall being planned was 508.019 mm/day within the return period of 5 years. The intensity of rainfall at the research site was 82.5 mm/hour having a rain duration averagely of 3.1 hours/day. Pit-1 Site Semambu had a catchment area around 469,317.15 m2 and a water discharge totally 61,238.81 m3/day derived from rainwater discharge of 48,530.48 m3/day and runoff water discharge 12,708.33 m3/day, whereas the capacity of the temporary accommodating pond (Sump) was 39,539.55 m3. The pump at the research site could not be operated anymore (broken). Accordingly, the recommendation that can be given to the company is changing the broken pumps with 4 units of multi fall 420 pumps having operating speed 1,300 rpm and actual discharge yielded by the pump 871.64 m3/hour. The pump worked for 14 hours/day and the total water discharge that could be produced was 12,202.96 m3/day. Open channel (ditch) at Pit-1 Site Semambu was the only one with accommodated discharge 1.27 m3/second. Thus, the recommendation that could be delivered to optimally prevent the runoff water coming into the mining area is by adding 2 ditches having the capacities of 0.90 m3/second and 0.75 m3/second which have been adjusted to the planned water discharge.


Greece was one of the biggest producers of asbestos in the world as well as a consumer. It took advantage of the asbestos rich Zidani mine, in the region of Western Macedonia in Greece. However, due to serious health problems caused by inhaling asbestos, it was banned in 1979 and the mine closed in March 2000. Rehabilitation management of the abandoned asbestos mining area, the depositions in the open - pit mining area and the tailings remnants was necessary in order to avoid health and environmental problems in the wider area The detailed soil protection and rehabilitation project of the degraded mining area was implemented taking all necessary and appropriate safety and health measures according to the requirements of the relevant E.U and National legislation, so that accidents would be prevented. Results show that the rehabilitation, soil protection and enhancement of the area help the ecosystems to be sustainable, ecologically and socially acceptable


2020 ◽  
Vol 12 (22) ◽  
pp. 3759
Author(s):  
Baodong Ma ◽  
Xuexin Li ◽  
Ziwei Jiang ◽  
Ruiliang Pu ◽  
Aiman Liang ◽  
...  

Dust pollution is severe in some mining areas in China due to rapid industrial development. Dust deposited on the vegetation canopy may change its spectra. However, a relationship between canopy spectra and dust amount has not been quantitatively studied, and a pixel-scale condition for remote sensing application has not been considered yet. In this study, the dust dispersion characteristics in an iron mining area were investigated using the American Meteorological Society (AMS) and the U.S. Environmental Protection Agency (EPA) regulatory model (AERMOD). Further, based on the three-dimensional discrete anisotropic radiative transfer (DART) model, the spectral characteristics of vegetation canopy under the dusty condition were simulated, and the influence of dustfall on vegetation canopy spectra was studied. Finally, the dust effect on vegetation spectra at the canopy scale was extended to a pixel scale, and the response of dust effect on vegetation spectra at the pixel scale was determined under different fractional vegetation covers (FVCs). The experimental results show that the dust pollution along a haul road was more severe and extensive than that in a stope. Taking dust dispersion along the road as an example, the variation of vegetation canopy spectra increased with the height of dust deposited on the vegetation canopy. At the pixel scale, a lower vegetation FVC would weaken the influence of dust on the spectra. The results derived from simulation spectral data were tested using satellite remote sensing images. The tested result indicates that the influence of dust retention on the pixel spectra with different FVCs was consistent with that created with the simulated data. The finding could be beneficial for those making decisions on monitoring vegetation under dusty conditions and reducing dust pollution in mining areas using remote sensing technology.


Environments ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 100
Author(s):  
Kristina Åhlgren ◽  
Viktor Sjöberg ◽  
Mattias Bäckström

Alum shale was mined for oil and uranium production in Kvarntorp, Sweden, 1942–1966. Remnants such as pit lakes, exposed shale and a 100-meter-high waste deposit with a hot interior affect the surrounding environment, with elevated concentrations of, e.g., Mo, Ni and U in the recipient. Today most pit lakes are circumneutral while one of the lakes is still acidic. All pit lakes show signs of sulfide weathering with elevated sulfate concentrations. Mass transport calculations show that for elements such as uranium and molybdenum the western lake system (lake Söderhavet in particular) contributes the largest part. For sulfate, the two western lakes contribute with a quarter each, the eastern lake Norrtorpssjön about a third and a serpentine pond system receiving water from the waste deposit contributes around 17%. Except for a few elements (e.g., nickel 35%), the Serpentine system (including the waste deposit area) is not a very pronounced point source for metal release compared to the pit lakes. Estimates about future water runoff when the deposit has cooled down suggest only a slight increase in downstream water flow. There could possibly be first flush effects when previous hot areas have been reached by water.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Rongxing He ◽  
Jing Zhang ◽  
Yang Liu ◽  
Delin Song ◽  
Fengyu Ren

Continuous mining of metal deposits leads the overlying strata to move, deform, and collapse, which is particularly obvious when open-pit mining and underground mining are adjacent. Once the mining depth of the adjacent open-pit lags severely behind the underground, the ultimate underground mining depth needs to be studied before the surface deformation extends to the open-pit mining area. The numerical simulation and the mechanical model are applied to research the ultimate underground mining depth of the southeast mining area in the Gongchangling Iron mine. In the numerical simulation, the effect of granular rock is considered and the granular rock in the collapse pit is simplified as the degraded rock mass. The ultimate underground mining depth can be obtained by the values of the indicators of surface movement and deformation. In the mechanical model, the modified mechanical model for the progressive hanging wall caving is established based on Hoke’s conclusion, which considers the lateral pressure of the granular rock. Using the limiting equilibrium analysis, the relationship of the ultimate underground mining depth and the range of surface caving can be derived. The results show that the ultimate underground mining depth obtained by the numerical simulation is greater than the theoretical calculation of the modified mechanical model. The reason for this difference may be related to the assumption of the granular rock in the numerical simulation, which increases the resistance of granular rock to the deformation of rock mass. Therefore, the ultimate underground mining depth obtained by the theoretical calculation is suggested. Meanwhile, the surface displacement monitoring is implemented to verify the reasonability of the ultimate underground mining depth. Monitoring results show that the indicators of surface deformation are below the critical value of dangerous movement when the underground is mined to the ultimate mining depth. The practice proves that the determination of the ultimate underground mining depth in this work can ensure the safety of the open-pit and underground synergetic mining.


2020 ◽  
Vol 194 ◽  
pp. 04043
Author(s):  
Guo Xiaoli ◽  
Yan Jiancheng ◽  
Li Xueliang ◽  
Wen Xin ◽  
Li Xingli

The dumps in the open-pit mining area in the eastern grassland are prone to landslides due to the fragile ecological environment, so it is inevitable to reshape the dump slopes. In order to explore a more scientific method for slope shaping of open-pit mine dump, slope stability analysis were used to compare effect of three types of slope-type (wave-shaped, slope-shaped and step-shaped slope shaping method)in outside dumping site of Baori Hiller open-pit mine. The results show that the slope stability is negatively correlated with the slope angle, and the stability of different shaping slopes is realized as wave-shaped slope (F=2.711)> Slope-shaped slope(F=2.513)>Step-shaped slope(F=1.047), in which the wave type and slope type are all within the safe range, but the step type slope is unstable; in consideration of cost, stability and erosion resistance, it is better to set the slope angle of the dump to 15°.The wave-shaped shaping method of the natural dumping of the excavation field outside the Baori Hiller open-pit mine has the best effect and is worth promoting.


Mining Revue ◽  
2021 ◽  
Vol 27 (2) ◽  
pp. 59-75
Author(s):  
Crina-Adriana Gurică ◽  
Mircea Georgescu

Abstract In this article an impact assessment is carried out, generated by activities in the energy sector related to Rovinari mining area. Energy-related activities in this area are carried out by open pit mining activities in the context of Tismana, Roșia, Pinoasa, Peşteana and Rovinari locations and Rovinari thermal power plant. Some information that has formed the input for the author’s approach has been provided by SC. Complexul Energetic Oltenia SA (CEO) and S.C. Institute of Scientific Research, Technological Engineering and Mine Designs on Lignite S.A. Craiova (ICSITPML) which has been processed, analysed and used for the presented environmental impact assessment. Two methods from specialized studies have been used for the impact assessment, namely: the Matrix Method for Rapid Impact Assessment (MERI) and the Method for Integrated Quantitative Impact and Risk Assessment of Environmental Pollution (EIRM). Based on the analysis carried out, it can be concluded that the activity in this sector does not lead to significant negative effects strictly associated with it.


Sign in / Sign up

Export Citation Format

Share Document