scholarly journals The continued relevance of Deep Brain Stimulation for chronic pain

2021 ◽  
Vol 6 (1) ◽  
pp. 009-014
Author(s):  
Farrell Sarah Marie ◽  
Aziz Tipu

For the millions of patients experiencing chronic pain despite pharmacotherapy, deep brain stimulation (DBS) provides a beacon of hope. Over the past decade the field has shifted away from DBS towards other forms of neuromodulation, particularly spinal cord stimulation (SCS). DBS for pain is still performed, albeit off-label in US and UK, and experiences variable success rates. SCS is an extremely useful tool for the modulation of pain but is limited in its application to specific pain aetiologies. We advocate use of DBS for pain, for patients for whom pharmacology has failed and for whom spinal cord stimulation is inadequate. DBS for chronic pain is at risk of premature neglect. Here we outline how this has come to pass, and in the process argue for the untapped potential for this procedure.

2021 ◽  
Vol 15 ◽  
Author(s):  
Jordan Prosky ◽  
Jackson Cagle ◽  
Kristin K. Sellers ◽  
Ro’ee Gilron ◽  
Cora de Hemptinne ◽  
...  

Deep brain stimulation (DBS) is a plausible therapy for various neuropsychiatric disorders, though continuous tonic stimulation without regard to underlying physiology (open-loop) has had variable success. Recently available DBS devices can sense neural signals which, in turn, can be used to control stimulation in a closed-loop mode. Closed-loop DBS strategies may mitigate many drawbacks of open-loop stimulation and provide more personalized therapy. These devices contain many adjustable parameters that control how the closed-loop system operates, which need to be optimized using a combination of empirically and clinically informed decision making. We offer a practical guide for the implementation of a closed-loop DBS system, using examples from patients with chronic pain. Focusing on two research devices from Medtronic, the Activa PC+S and Summit RC+S, we provide pragmatic details on implementing closed- loop programming from a clinician’s perspective. Specifically, by combining our understanding of chronic pain with data-driven heuristics, we describe how to tune key parameters to handle feature selection, state thresholding, and stimulation artifacts. Finally, we discuss logistical and practical considerations that clinicians must be aware of when programming closed-loop devices.


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Irene E Harmsen ◽  
Darrin J Lee ◽  
Robert F Dallapiazza ◽  
Philippe De Vloo ◽  
Robert Chen ◽  
...  

Abstract INTRODUCTION Stimulation frequency has been considered a crucial determinant of efficacy in deep brain stimulation (DBS). DBS at frequencies over 250 Hz is not currently employed and consensus in the field suggests that higher frequencies are not clinically effective. With the recent demonstration of clinically effective ultrahigh frequency (UHF) spinal cord stimulation at 10 kHz we tested whether UHF stimulation could also be clinically useful in movement disorder patients with DBS. We evaluated the clinical effects and safety of UHF DBS in patients with subthalamic nucleus (STN) or ventral intermediate thalamic nucleus (VIM) DBS. METHODS We studied the effects of conventional (130 Hz) and UHF stimulation in 5 patients with Parkinson's disease (PD) with STN DBS and in one patient with essential tremor (ET) with VIM DBS. We compared the clinical benefit and adverse effects of stimulation at various amplitudes either intraoperatively or postoperatively with the electrodes externalized. RESULTS Motor performance improved in all 6 patients with UHF DBS. About 10 kHz stimulation at amplitudes = 3.0 mA appeared to be as effective as 130 Hz in improving motor symptoms (46.2% vs 53.5% motor score reduction, P = .110, N = 90 trials). Interestingly, 10 kHz stimulation resulted in fewer stimulation-induced paresthesiae and speech adverse effects than 130 Hz stimulation. CONCLUSION Our results indicate that DBS at 10 kHz produces clinical benefits in patients with movement disorders. Like 10 kHz spinal cord stimulation, 10 kHz DBS has the potential to produce clinical benefits while possibly reducing stimulation-induced adverse effects. Further studies will be required to optimize UHF DBS stimulation parameters and to determine its clinical utility.


2016 ◽  
Vol 32 (2) ◽  
pp. 278-282 ◽  
Author(s):  
Carolina Pinto de Souza ◽  
Clement Hamani ◽  
Carolina Oliveira Souza ◽  
William Omar Lopez Contreras ◽  
Maria Gabriela dos Santos Ghilardi ◽  
...  

2013 ◽  
Vol 80 (3-4) ◽  
pp. S30.e1-S30.e9 ◽  
Author(s):  
Takamitsu Yamamoto ◽  
Yoichi Katayama ◽  
Toshiki Obuchi ◽  
Kazutaka Kobayashi ◽  
Hideki Oshima ◽  
...  

2006 ◽  
Vol 21 (6) ◽  
pp. 1-8 ◽  
Author(s):  
Dirk Rasche ◽  
Patricia C. Rinaldi ◽  
Ronald F. Young ◽  
Volker M. Tronnier

Object Electrical intracerebral stimulation (also referred to as deep brain stimulation [DBS]) is a tool for the treatment of chronic pain states that do not respond to less invasive or conservative treatment options. Careful patient selection, accurate target localization, and identification with intraoperative neurophysiological techniques and blinded test evaluation are the key requirements for success and good long-term results. The authors present their experience with DBS for the treatment of various chronic pain syndromes. Methods In this study 56 patients with different forms of neuropathic and mixed nociceptive/neuropathic pain syndromes were treated with DBS according to a rigorous protocol. The postoperative follow-up duration ranged from 1 to 8 years, with a mean of 3.5 years. Electrodes were implanted in the somatosensory thalamus and the periventricular gray region. Before implantation of the stimulation device, a double-blinded evaluation was carefully performed to test the effect of each electrode on its own as well as combined stimulation with different parameter settings. The best long-term results were attained in patients with chronic low-back and leg pain, for example, in so-called failed–back surgery syndrome. Patients with neuropathic pain of peripheral origin (such as complex regional pain syndrome Type II) also responded well to DBS. Disappointing results were documented in patients with central pain syndromes, such as pain due to spinal cord injury and poststroke pain. Possible reasons for the therapeutic failures are discussed; these include central reorganization and neuroplastic changes of the pain-transmitting pathways and pain modulation centers after brain and spinal cord lesions. Conclusions The authors found that, in carefully selected patients with chronic pain syndromes, DBS can be helpful and can add to the quality of life.


2021 ◽  
Vol 146 ◽  
pp. 246-260
Author(s):  
Giovanna Zambo Galafassi ◽  
Pedro Henrique Simm Pires de Aguiar ◽  
Renata Faria Simm ◽  
Paulo Roberto Franceschini ◽  
Marco Prist Filho ◽  
...  

2017 ◽  
Vol 88 (9) ◽  
pp. 804-805 ◽  
Author(s):  
Han-Lin Chiang ◽  
Yi-Cheng Tai ◽  
Jacqueline McMaster ◽  
Victor SC Fung ◽  
Neil Mahant

2021 ◽  
Vol 11 (5) ◽  
pp. 639
Author(s):  
David Bergeron ◽  
Sami Obaid ◽  
Marie-Pierre Fournier-Gosselin ◽  
Alain Bouthillier ◽  
Dang Khoa Nguyen

Introduction: To date, clinical trials of deep brain stimulation (DBS) for refractory chronic pain have yielded unsatisfying results. Recent evidence suggests that the posterior insula may represent a promising DBS target for this indication. Methods: We present a narrative review highlighting the theoretical basis of posterior insula DBS in patients with chronic pain. Results: Neuroanatomical studies identified the posterior insula as an important cortical relay center for pain and interoception. Intracranial neuronal recordings showed that the earliest response to painful laser stimulation occurs in the posterior insula. The posterior insula is one of the only regions in the brain whose low-frequency electrical stimulation can elicit painful sensations. Most chronic pain syndromes, such as fibromyalgia, had abnormal functional connectivity of the posterior insula on functional imaging. Finally, preliminary results indicated that high-frequency electrical stimulation of the posterior insula can acutely increase pain thresholds. Conclusion: In light of the converging evidence from neuroanatomical, brain lesion, neuroimaging, and intracranial recording and stimulation as well as non-invasive stimulation studies, it appears that the insula is a critical hub for central integration and processing of painful stimuli, whose high-frequency electrical stimulation has the potential to relieve patients from the sensory and affective burden of chronic pain.


Sign in / Sign up

Export Citation Format

Share Document