scholarly journals Ab initio study of the mechanism of the reaction ClO + O --> Cl + O2

2021 ◽  
Vol 66 (1) ◽  
Author(s):  
S. Naskar ◽  
G. Nandi ◽  
T. K. Ghosh

Abstract. Ab initio investigation on the reaction mechanism of ClO + O --> Cl + O2 reaction has been performed using correlation consistent triple zeta basis set. The geometry and frequency of the reactants, products, minimum energy geometries and transition states are obtained using MP2 method and energetics are obtained at the QCISD(T)//MP2 level of theory. Primarily, a possible reaction mechanism is obtained on the basis on IRC calculations using MP2 level of theory. To obtain true picture of the reaction path, we performed IRC calculations using CASSCF method with a minimal basis set 6-31G**. Some new equilibrium geometries and transition states have been identified at the CASSCF level. Energetics are also obtained at the QCISD(T)//CASSCF method. Possible reaction paths have been discussed, which are new in literature. Heat of reaction is found to be consistent with the experimental data. Bond dissociation energies to various dissociation paths are also reported.

2003 ◽  
Vol 68 (3) ◽  
pp. 489-508 ◽  
Author(s):  
Yinghong Sheng ◽  
Jerzy Leszczynski

The equilibrium geometries, harmonic vibrational frenquencies, and the dissociation energies of the OCH+-Rg (Rg = He, Ne, Ar, Kr, and Xe) complexes were calculated at the DFT, MP2, MP4, CCSD, and CCSD(T) levels of theory. In the lighter OCH+-Rg (Rg = He, Ne, Ar) rare gas complexes, the DFT and MP4 methods tend to produce longer Rg-H+ distance than the CCSD(T) level value, and the CCSD-calculated Rg-H+ bond lengths are slightly shorter. DFT method is not reliable to study weak interaction in the OCH+-He and OCH+-Ne complexes. A qualitative result can be obtained for OCH+-Ar complex by using the DFT method; however, a higher-level method using a larger basis set is required for the quantitative predictions. For heavier atom (Kr, Xe)-containing complexes, only the CCSD method predicted longer Rg-H+ distance than that obtained at the CCSD(T) level. The DFT method can be applied to obtain the semiquantitative results. The relativistic effects are expected to have minor effect on the geometrical parameters, the H+-C stretching mode, and the dissociation energy. However, the dissociation energies are sensitive to the quality of the basis set. The nature of interaction between the OCH+ ion and Rg atoms was also analyzed in terms of the interaction energy components.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2310
Author(s):  
Nathan C. Frey ◽  
Eric Van Dornshuld ◽  
Charles Edwin Webster

The correlation consistent Composite Approach for transition metals (ccCA-TM) and density functional theory (DFT) computations have been applied to investigate the fluxional mechanisms of cyclooctatetraene tricarbonyl chromium ((COT)Cr(CO)3) and 1,3,5,7-tetramethylcyclooctatetraene tricarbonyl chromium, molybdenum, and tungsten ((TMCOT)M(CO)3 (M = Cr, Mo, and W)) complexes. The geometries of (COT)Cr(CO)3 were fully characterized with the PBEPBE, PBE0, B3LYP, and B97-1 functionals with various basis set/ECP combinations, while all investigated (TMCOT)M(CO)3 complexes were fully characterized with the PBEPBE, PBE0, and B3LYP methods. The energetics of the fluxional dynamics of (COT)Cr(CO)3 were examined using the correlation consistent Composite Approach for transition metals (ccCA-TM) to provide reliable energy benchmarks for corresponding DFT results. The PBE0/BS1 results are in semiquantitative agreement with the ccCA-TM results. Various transition states were identified for the fluxional processes of (COT)Cr(CO)3. The PBEPBE/BS1 energetics indicate that the 1,2-shift is the lowest energy fluxional process, while the B3LYP/BS1 energetics (where BS1 = H, C, O: 6-31G(d′); M: mod-LANL2DZ(f)-ECP) indicate the 1,3-shift having a lower electronic energy of activation than the 1,2-shift by 2.9 kcal mol−1. Notably, PBE0/BS1 describes the (CO)3 rotation to be the lowest energy process, followed by the 1,3-shift. Six transition states have been identified in the fluxional processes of each of the (TMCOT)M(CO)3 complexes (except for (TMCOT)W(CO)3), two of which are 1,2-shift transition states. The lowest-energy fluxional process of each (TMCOT)M(CO)3 complex (computed with the PBE0 functional) has a ΔG‡ of 12.6, 12.8, and 13.2 kcal mol−1 for Cr, Mo, and W complexes, respectively. Good agreement was observed between the experimental and computed 1H-NMR and 13C-NMR chemical shifts for (TMCOT)Cr(CO)3 and (TMCOT)Mo(CO)3 at three different temperature regimes, with coalescence of chemically equivalent groups at higher temperatures.


1988 ◽  
Vol 53 (10) ◽  
pp. 2308-2319 ◽  
Author(s):  
János G. Ángyán ◽  
György Ferenczy ◽  
Péter Nagy ◽  
Gábor Náray-Szabó

We present a modification of our bond increment method for the calculation of molecular electrostatic potentials and fields inside zeolite cavities. Introducing a variant of the Mulliken approximation for the off-diagonal matrix elements of the potential and optimizing the parameters of the modified formula, we achieved much better agreement with ab initio STO-3G minimal basis set results than with the original version. For a representative set of 10 small molecules the standard mean deviation between potentials calculated on the van der Waals surface with the ab initio and approximate methods is 9·1 kJ/mol. The relative error decreases from 21 to 9 per cent for the lone-pair regions of molecules modelling zeolite cavities. Applying the modified bond increment method for a realistic faujausite model we have found that the potential and field are almost exclusively of long-range origin. This means that, if using appropriate atomic charges, the monopole approximation gives correct results for electrostatic potentials and fields inside zeolite cavities.


1988 ◽  
Vol 66 (8) ◽  
pp. 2041-2044 ◽  
Author(s):  
R. J. McEachern ◽  
J. A. Weil ◽  
P. G. Mezey

Minimal basis set ab initio SCF-MO calculations were performed on the 21-atom system of tetramethoxymethane (tetramethyl orthocarbonate). The geometric configuration of this model was optimized in two conformations, one having quasi-S4 symmetry and the other D2d symmetry. The S4 conformation was found to be 8 kJ mol−1 lower in energy than the D2d conformation, at the STO-3G level. The calculated energy difference is consistent with the recently measured geometric configuration of crystalline tetrabenzyl orthocarbonate. The calculated values of the bond lengths and angles were compared to the results of an electron diffraction study of the methyl species, and agree well with experiment. The theoretical electric dipole moment was calculated to be 0.01 D.


1973 ◽  
Vol 26 (5) ◽  
pp. 921 ◽  
Author(s):  
RD Brown ◽  
GR Williams

The simplified ab-initio molecular-orbital method described previously is particularly suited to the calculation of polarizabilities by the non-perturbative coupled Hartree-Fock technique. Trial calculations on CO and HF, for which comparison with corresponding ab-initio calculations is possible, show that the method gives an adequate numerical performance. Minimal basis set calculations in general tend to give values that are considerably too low because of inadequate flexibility of the basis and this is the origin of the large discrepancy between theory and experiment, especially for small molecules. ��� Results are also reported for N2O and O3. For these larger systems the SAI results with minimal basis sets are noticeably nearer experimental values. The polarizability anisotropy for N2O is particularly well reproduced by the SAI method. �


2015 ◽  
Vol 14 (03) ◽  
pp. 1550019 ◽  
Author(s):  
Lai-Cai Li ◽  
Wei Wang ◽  
Dan Peng ◽  
Rui Pan ◽  
An-Min Tian

The catalytic coupling reaction mechanism for the transformation from p-aminothiophenol (PATP) to 4,4′-dimercaptoazobenzene (4,4′-DMAB) on silver cluster was studied by the density functional theory. All the reactants, intermediates, transition states and products were optimized with B3LYP method at 6-311+G (d, p) basis set (the LanL2DZ basis set was used for Ag atom). Transition states and intermediates have been confirmed by the corresponding vibration analysis and intrinsic reactions coordinate (IRC). In addition, nature bond orbital (NBO) and atoms in molecules (AIM) theories have been used to analyze orbital interactions and bond natures. Consistent with the conclusions reported in the literature, the core of obtaining the production of azobenzene according to the coupling reaction of PATP absorbed on Ag 5 clusters is the elimination of two H atoms. Meanwhile, we find that the effect of illumination in that reaction matters a lot. We also found in PATP molecular that the synergistic catalytic effect of S end absorbed on the catalyzer draws dramatically evident under no illumination conditions, while it draws less obvious under light. According to the paper's conclusion, PATP absorbed on the surface of Ag 5 tends to generate azobenzene easily.


1984 ◽  
Vol 39 (5) ◽  
pp. 495-498
Author(s):  
V. Renugopalakrishnan ◽  
R. Walter

An ab initio molecular orbital technique was used to investigate the rotational barrier about the disulphide bridge in dimethyl disulphide. Various minimal and extended basis sets were used in the calculations. The chosen minimal basis set was the STO-3G set, and the extended basis sets were the STO 4-31G set, the Dunning and Hay set consisting of contracted Gaussian basis sets: [2s], [3s, 2p] and [6s, 4p] for H, C, and S atoms, and the Dunning and Hay basis set augmented with a d-type function on S atoms. The total energy was calculated as a function of the torsion angle about the disulphide bond. The barrier to rotation about this bond was found to be two-fold in nature, in accordance with previous findings. The heights of the barriers were observed to depend upon the basis set and input geometry. For our particular choice of basis sets and input geometry, the calculated value of the eis and trans barriers ranged from 12.68 to 16.49 kcal/mol and from 6.23 to 8 kcal/mol, respectively. Inclusion of a d-type function in the basis sets was found to result in better agreement between the calculated and experimental values, thereby emphasizing the need for considering 3d orbitals of sulphur in MO calculations


Author(s):  
Ricardo Gobato ◽  
Alireza Heidari ◽  
Lauro Figueroa Valverde ◽  
Abhijit Mitra

The core of the work is based on the replacement of carbon atoms by silicon atoms, on the basis of four standard bases of DNA: A, C, G and T (adenine, cytosine, guanine, thymine). Determining with minimum computational methods via ab initio Hartree-Fock methods, infrared spectrum and their peak absorbance frequencies. The option for simple replacement of carbon by silicon is due to the peculiar characteristics between both. Atomic interactions under non-carbon conditions were studied, with only the Hydrogen, Silicon, Nitrogen and Oxygen atoms, in CNTP, for the four standard bases of DNA, A, C, G and T, thus obtaining by quantum chemistry four new compounds, named here as: ASi, CSi, GSi and TSi. Computational calculations admit the possibility of the formation of such molecules, their existence being possible via quantum chemistry. Calculations obtained in the ab initio Unrestricted and Restrict Hartree-Fock method, (UHF and RHF) in the set of basis used Effective core potential (ECP) minimal basis, UHF CEP-31G (ECP split valance) and UHF CEP-121G (ECP triple-split basis), CC-pVTZ (Correlation-consistent valence-only basis sets triple-zeta) and 6-311G**(3df, 3pd) (Gaussian functions quadruple-zeta basis sets).


Sign in / Sign up

Export Citation Format

Share Document