composite approach
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 28)

H-INDEX

25
(FIVE YEARS 4)

Clay Minerals ◽  
2022 ◽  
pp. 1-47
Author(s):  
Georgia Leontopoulou ◽  
Georgios E. Christidis ◽  
Grigorios Rousakis ◽  
Noémi S. Müller ◽  
George Papatheodorou ◽  
...  

2021 ◽  
Vol 7 ◽  
Author(s):  
Ian Chandler ◽  
William Allsop ◽  
David Robinson ◽  
Tiziana Rossetto

This paper describes the evolution through three generations of pneumatic Tsunami Simulators for physical model tests of realistic tsunami. The pneumatic method, originally developed for tidal modeling in the Fifties, has been modernized to generate extraordinarily long waves in a controlled manner, with accurate reproduction of recorded free-surface tsunami field data. The paper describes how the simulator designs were developed and how they performed in the laboratory. Example results are presented from selected research studies that have validated their performance and then used to quantify tsunami effects. Having described each of the first, second, and third generation Tsunami Simulators, the paper discusses how to calibrate the wave generation control to model tsunami with model periods 20–240 s duration (equivalent to 2–20 min duration in prototype at 1:50 scale), many of which are far too long to “fit into the test flume.” The evolution of a composite approach to wave calibration is described with examples from second and third generation devices, demonstrated by successful simulation of both the 2004 Boxing Day, and the 2011 Great Eastern Japan (Tohoku) Tsunami at 1:50 scale.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2310
Author(s):  
Nathan C. Frey ◽  
Eric Van Dornshuld ◽  
Charles Edwin Webster

The correlation consistent Composite Approach for transition metals (ccCA-TM) and density functional theory (DFT) computations have been applied to investigate the fluxional mechanisms of cyclooctatetraene tricarbonyl chromium ((COT)Cr(CO)3) and 1,3,5,7-tetramethylcyclooctatetraene tricarbonyl chromium, molybdenum, and tungsten ((TMCOT)M(CO)3 (M = Cr, Mo, and W)) complexes. The geometries of (COT)Cr(CO)3 were fully characterized with the PBEPBE, PBE0, B3LYP, and B97-1 functionals with various basis set/ECP combinations, while all investigated (TMCOT)M(CO)3 complexes were fully characterized with the PBEPBE, PBE0, and B3LYP methods. The energetics of the fluxional dynamics of (COT)Cr(CO)3 were examined using the correlation consistent Composite Approach for transition metals (ccCA-TM) to provide reliable energy benchmarks for corresponding DFT results. The PBE0/BS1 results are in semiquantitative agreement with the ccCA-TM results. Various transition states were identified for the fluxional processes of (COT)Cr(CO)3. The PBEPBE/BS1 energetics indicate that the 1,2-shift is the lowest energy fluxional process, while the B3LYP/BS1 energetics (where BS1 = H, C, O: 6-31G(d′); M: mod-LANL2DZ(f)-ECP) indicate the 1,3-shift having a lower electronic energy of activation than the 1,2-shift by 2.9 kcal mol−1. Notably, PBE0/BS1 describes the (CO)3 rotation to be the lowest energy process, followed by the 1,3-shift. Six transition states have been identified in the fluxional processes of each of the (TMCOT)M(CO)3 complexes (except for (TMCOT)W(CO)3), two of which are 1,2-shift transition states. The lowest-energy fluxional process of each (TMCOT)M(CO)3 complex (computed with the PBE0 functional) has a ΔG‡ of 12.6, 12.8, and 13.2 kcal mol−1 for Cr, Mo, and W complexes, respectively. Good agreement was observed between the experimental and computed 1H-NMR and 13C-NMR chemical shifts for (TMCOT)Cr(CO)3 and (TMCOT)Mo(CO)3 at three different temperature regimes, with coalescence of chemically equivalent groups at higher temperatures.


2021 ◽  
Vol 30 (2) ◽  
pp. 1-29
Author(s):  
Qiuyuan Chen ◽  
Xin Xia ◽  
Han Hu ◽  
David Lo ◽  
Shanping Li

Code summarization aims at generating a code comment given a block of source code and it is normally performed by training machine learning algorithms on existing code block-comment pairs. Code comments in practice have different intentions. For example, some code comments might explain how the methods work, while others explain why some methods are written. Previous works have shown that a relationship exists between a code block and the category of a comment associated with it. In this article, we aim to investigate to which extent we can exploit this relationship to improve code summarization performance. We first classify comments into six intention categories and manually label 20,000 code-comment pairs. These categories include “what,” “why,” “how-to-use,” “how-it-is-done,” “property,” and “others.” Based on this dataset, we conduct an experiment to investigate the performance of different state-of-the-art code summarization approaches on the categories. We find that the performance of different code summarization approaches varies substantially across the categories. Moreover, the category for which a code summarization model performs the best is different for the different models. In particular, no models perform the best for “why” and “property” comments among the six categories. We design a composite approach to demonstrate that comment category prediction can boost code summarization to reach better results. The approach leverages classified code-category labeled data to train a classifier to infer categories. Then it selects the most suitable models for inferred categories and outputs the composite results. Our composite approach outperforms other approaches that do not consider comment categories and obtains a relative improvement of 8.57% and 16.34% in terms of ROUGE-L and BLEU-4 score, respectively.


2021 ◽  
Vol 27 (1) ◽  
pp. 15-34
Author(s):  
AbdulHafeez Muhammad ◽  
Ansar Siddique ◽  
Quadri Noorulhasan Naveed ◽  
Usman Saleem ◽  
Mohd Abul Hasan ◽  
...  

Author(s):  
Carlos de Oliveira Amorim ◽  
João S. Amaral ◽  
Vitor Amaral

The search for magnetoelectric materials typically revolves around the struggle to simultaneously coexist magnetic and ferroelectric orders in the same material, either using an intrinsic or extrinsic/composite approach. Via ab...


Sign in / Sign up

Export Citation Format

Share Document