scholarly journals Constituents of Organic Pollutants in Leachates from Different Types of Landfill Sites and Their Fate in the Treatment Processes.

1999 ◽  
Vol 22 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Kazuya YAMADA ◽  
Taro URASE ◽  
Tomonori MATSUO ◽  
Noriyuki SUZUKI
Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 513
Author(s):  
Anna Rabajczyk ◽  
Maria Zielecka ◽  
Krzysztof Cygańczuk ◽  
Łukasz Pastuszka ◽  
Leszek Jurecki

A recent trend in the field of membrane research is the incorporation of nanoparticles into polymeric membranes, which could produce synergistic effects when using different types of materials. This paper discusses the effect of the introduction of different nanometals such as silver, iron, silica, aluminum, titanium, zinc, and copper and their oxides on the permeability, selectivity, hydrophilicity, conductivity, mechanical strength, thermal stability, and antiviral and antibacterial properties of polymeric membranes. The effects of nanoparticle physicochemical properties, type, size, and concentration on a membrane’s intrinsic properties such as pore morphology, porosity, pore size, hydrophilicity/hydrophobicity, membrane surface charge, and roughness are discussed, and the performance of nanocomposite membranes in terms of flux permeation, contaminant rejection, and antifouling capability are reviewed. The wide range of nanocomposite membrane applications including desalination and removal of various contaminants in water-treatment processes are discussed.


Industrialization and modernization in recent times have led to a water crisis across the world. Conventional methods of water treatment like physical, chemical and biological methods which comprise of many commonly used techniques like membrane separation, adsorption, chemical treatment etc. have been in use for many decades. However, problems like sludge disposal, high operating costs etc. have led to increased focus on Advanced Oxidation Processes (AOPs) as alternative treatment methods. AOPs basically involve reactions relying on the high oxidation potential of the hydroxyl (OH•) free radical. They have the potential to efficiently treat various toxic, organic pollutants and complete degradation of contaminants (mineralization) of emerging concern. Many different types of homogenous as well as heterogenous AOPs have been studied viz: UV/H2O2, Fenton, Photo-Fenton, Sonolysis, Photocatalysis etc. for treatment of a wide variety of organic pollutants. Different AOPs are suitable for different types of wastewater and hence proper selection of the right technique for a particular type of pollutant is required. The inherent advantages offered by AOPs like elimination of sludge disposal problems, operability under mild conditions, ability to harness sunlight, non selective nature (ability to degrade all organic and microbial contamination) etc. have made it one of the most actively researched areas in recent times for wastewater treatment. Despite the benefits and intense research, commercial applicability of AOPs as a practical technique for treating wastewater on a large scale is still far from satisfactory. Nevertheless, positive results in lab scale and pilot plant studies make them a promising water treatment technique for the future. In the present chapter, an attempt has been made to discuss all aspects of AOPs beginning with the fundamental concepts, classification, underlying mechanism, comparison, commercialization to the latest developments in AOPs.


Industrialization and modernization in recent times have led to a water crisis across the world. Conventional methods of water treatment like physical, chemical and biological methods which comprise of many commonly used techniques like membrane separation, adsorption, chemical treatment etc. have been in use for many decades. However, problems like sludge disposal, high operating costs etc. have led to increased focus on Advanced Oxidation Processes (AOPs) as alternative treatment methods. AOPs basically involve reactions relying on the high oxidation potential of the hydroxyl (OH•) free radical. They have the potential to efficiently treat various toxic, organic pollutants and complete degradation of contaminants (mineralization) of emerging concern. Many different types of homogenous as well as heterogenous AOPs have been studied viz: UV/H2O2, Fenton, Photo-Fenton, Sonolysis, Photocatalysis etc. for treatment of a wide variety of organic pollutants. Different AOPs are suitable for different types of wastewater and hence proper selection of the right technique for a particular type of pollutant is required. The inherent advantages offered by AOPs like elimination of sludge disposal problems, operability under mild conditions, ability to harness sunlight, non selective nature (ability to degrade all organic and microbial contamination) etc. have made it one of the most actively researched areas in recent times for wastewater treatment. Despite the benefits and intense research, commercial applicability of AOPs as a practical technique for treating wastewater on a large scale is still far from satisfactory. Nevertheless, positive results in lab scale and pilot plant studies make them a promising water treatment technique for the future. In the present chapter, an attempt has been made to discuss all aspects of AOPs beginning with the fundamental concepts, classification, underlying mechanism, comparison, commercialization to the latest developments in AOPs.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3805 ◽  
Author(s):  
Janusz Kluczyński ◽  
Lucjan Śnieżek ◽  
Krzysztof Grzelak ◽  
Artur Oziębło ◽  
Krzysztof Perkowski ◽  
...  

In this study, we analyzed the mechanical properties of selectively laser melted (SLM) steel obtained via different modifications during and after the manufacturing process. The aim was to determine the effects of precipitation heat treatment on the mechanical properties of elements additively manufactured using three different process parameters. Some samples were additionally obtained using hot isostatic pressing (HIP), while some were treated using two different types of heat treatment and a combination of those two processes. From each manufactured sample, a part of the material was taken for structural analysis including residual stress analysis and microstructural investigations. In the second part of the research, the mechanical properties were studied to define the scleronomic hardness of the samples. Finally, tensile tests were conducted using a digital image correlation (DIC) test and fracture analysis. The treated samples were found to be significantly elongated, thus indicating the advantages of using precipitation heat treatment. Additionally, precipitation heat treatment was found to increase the porosity of samples, which was the opposite compared to HIP-treated samples.


Proceedings ◽  
2019 ◽  
Vol 29 (1) ◽  
pp. 14 ◽  
Author(s):  
Mouele ◽  
Dinu ◽  
Parau ◽  
Missengue ◽  
Vladescu ◽  
...  

The increased detection of organic pollutants in drinking water and their resistance to degradation by wastewater treatment processes has motivated the development of more efficient, affordable and sustainable methods of purification of drinking water and wastewater. [...]


2016 ◽  
Vol 20 (01n04) ◽  
pp. 150-166 ◽  
Author(s):  
Lucía Fernández ◽  
Valdemar I. Esteves ◽  
Ângela Cunha ◽  
Rudolf J. Schneider ◽  
João P.C. Tomé

New methods for water treatment are required as a result from an increasing awareness in the reduction of the pollution impact in the environment. In the perspective of the photo-oxidation of organic pollutants present in water, the principal incentive for the preparation of heterogeneous photocatalysts is their easy recovery from the reaction mixture, which allows their reuse in successive runs, minimizing the loss of their original photocatalytic properties. Different types of supports can be used in the immobilization of photoactive species, such as porphyrins (Pors) and phthalocyanines (Pcs). This mini-review will consider the different methodologies for the immobilization of Pors and Pcs and their photocatalytic performance in the photodegradation of organic pollutants in water, addressing also their recycling ability in successive water treatments.


Sign in / Sign up

Export Citation Format

Share Document