scholarly journals Susceptibility Status of a Recently Introduced Population of Aedes albopictus to Insecticides Used by the Vector Control Program in Merida, Yucatan, Mexico

2021 ◽  
Vol 37 (3) ◽  
pp. 164-168
Author(s):  
Y. Contreras-Perera ◽  
G. Gonzá lez-Olvera ◽  
A. Che-Mendoza ◽  
P. Mis-Avila ◽  
J. Palacio-Vargas ◽  
...  

ABSTRACT In recent years, Aedes albopictus has become the most important invasive mosquito species worldwide. In 2018, Ae. albopictus was found in a suburban area of Merida, one of the cities with the highest number of arbovirus cases in Mexico in the last 10 years. As Ae. albopictus continues its range expansion, there is a need to monitor its susceptibility to existing insecticide classes, since countries like Mexico currently do not consider Ae. albopictus in its insecticide management programs. In order to determine its susceptibility to the insecticides usually applied by the vector control program in Mexico, the Centers for Disease Control and Prevention bottle bioassays were performed on individuals from established population of Ae. albopictus from Merida, Yucatan, Mexico. Results suggested that the population recently found in the suburban area of Merida is susceptible to permethrin, deltamethrin, chlorpyrifos, malathion, bendiocarb, and propoxur. Further studies of insecticide resistance using biochemical and molecular tools together with more knowledge of the biology and ecology of this species are necessary to generate specific and efficient control strategies in Mexico.

Author(s):  
Hasan Mohammad Al-Amin ◽  
Seth Irish ◽  
Audrey Lenhart ◽  
Mohammad Shafiul Alam

Aedes albopictus is a highly invasive mosquito species and a vector of human arboviral diseases including dengue, chikungunya, and Zika. There are no effective drugs or vaccines for the treatment or prevention of most of these diseases, so the primary option for disease prevention and control is to target mosquitoes, often using insecticides. Despite vector control efforts, cases of arboviral diseases are increasing in Bangladesh and it is important to understand if this escalation is associated with the presence of insecticide resistance in Aedes populations, including Ae. albopictus. The CDC bottle bioassays performed on Ae. albopictus from two districts in Bangladesh detected resistance to permethrin but susceptibility to deltamethrin, malathion, and bendiocarb. The detection of permethrin resistance is worrisome, since arbovirus vector control strategies in Bangladesh currently include the use of permethrin. Routine monitoring of the susceptibility status of key vector populations in Bangladesh will allow a better understanding of resistance trends, enabling the strengthening of control strategies.


2021 ◽  
Vol 53 (03) ◽  
pp. 153-158
Author(s):  
Sarmad Moin ◽  

Pyrethroids are powerful insecticides used in the vector control program with impregnated mesh, and residual indoor sprays. However, resistance to insecticide reduces the effectiveness. The present susceptibility study carried out against theAnopheles Stephensi to monitor the sensitivity conditions of An. Stephensi vector, which raises the need to understand the state of vector resistance in the Dungarpur region of Rajasthan, India in order to better report vector-based interventions. The sensitivity study was carried out by the WHO standard method using recommended diagnostic doses of DDT, alpha-cypermethrin, permethrin, and deltamethrin. An. Stephensi showed resistance to DDT from the entire study while sensitive to alpha-cypermethrin, permethrin, and deltamethrin. The study looks at the selection and circulation of the appropriate insecticide’s molecule for a vector control program as insecticide need constant monitoring to develop effective vector control strategies such as improving insecticide by applying integrated biological and ecological methods.


2021 ◽  
Vol 14 ◽  
pp. 1-8
Author(s):  
WAN FATMA ZUHARAH ◽  
WAN FATMA ZUHARAH ◽  
Ahmad Mohiddin ◽  
Asmalia Md Lasim ◽  
Zairi Jaal ◽  
...  

The vector control program has become challenging due to the resistance problem occurs in Aedes mosquitoes. Aedes albopictus (Skuse, 1894) is the most dominant species contributing as a vector of dengue, Chikungunya and Zika viruses in Malaysia. Knowledge of the current insecticide resistance of Ae. albopictus is essential for the success of vector control program. Here, we reported the susceptibility status of Ae. albopictus collected from the dengue hotspot areas in the Northern District of Penang Island, Malaysia on three common use insecticides in vector control program. Aedes albopictus was sampled from three localities at Flat Hamna, Kampung Sungai Gelugor and Kampung Tanjung Tokong in the Northern District of Penang Island, Malaysia. The adult bioassay results suggested the Flat Hamna strain (FH) was found to develop incipient resistance after 24h exposure towards all three insecticides tested; permethrin, deltamethrin and malathion (mortality 97-87%). With 1.93 fold of Resistance Ratio 50 (RR50) values, FH strains have the highest chances to develop resistance towards permethrin. Among all insecticides tested, malathion was contributed to significantly higher KdT50 in all Ae. albopictus strains as compared to VCRU reference strain (p<0.001). Thus suggesting malathion insecticide is the least effective insecticide in our vector control program. Our finding can be used as a baseline for insecticide resistance of Ae. albopictus to improve vector control across Malaysia. Permethrin and deltamethrin are still reliable to be used in the control program, nonetheless require continuous monitoring on their susceptibility towards Ae. albopictus.


2009 ◽  
Vol 14 (45) ◽  
Author(s):  
E J Scholte ◽  
W Den Hartog ◽  
M Braks ◽  
C Reusken ◽  
M Dik ◽  
...  

In late August and early September 2009, numerous larvae, pupae, and actively flying adult specimens of Ochlerotatus atropalpus were discovered in the Province of Brabant, southern Netherlands, during surveillance activities for Aedes albopictus at two trading companies that import used tires. No Ae. albopictus were found. Both companies mainly import used tires from countries in Europe, but also from North America. Oc. atropalpus is endemic to North America and has so far only been found outside of its endemic range in Europe, namely France and Italy, where it was subsequently eradicated. A preliminary modelling study shows that the weather conditions in the Netherlands are unlikely to prevent establishment of Oc. atropalpus. This species has so far only been shown to serve as a vector for virus transmission under laboratory conditions. Studies on potential human and veterinary health risks, as well as possible control strategies are currently ongoing.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Marylene de Brito Arduino

The control of dengue relies on the elimination of vector breeding sites. This study identified the container categories most productive for A. aegypti within the framework of the São Paulo dengue vector control program (DVCP) in São Sebastião, a large city located on the state’s coast where dengue cases have occurred since 2001. Containers were inspected monthly for the occurrence of mosquito immature stages during two consecutive vector-breeding seasons in 2002–2004. Containers were classified by their material, use, and fixed or removable status. Pupal productivity differed significantly among container types, items made of metal and plastic, and boats being those with the highest relative contribution. Significant correlations between traditional indices of A. aegypti abundance (Container Index, House Index, and Breteau Index) and pupal productivity/demographic indices (Pupae/Container, Pupae/House, Pupae/ha, and Pupae/Person) ranged 0.56–0.65; correlations were not statistically significant for any combination involving the Pupae/Container index. The assessment of pupal productivity indices could be incorporated into the DVCP without any additional operational onus, allowing vector control managers to determine appropriate control actions targeting the most productive containers and sites. Further studies are needed to assess whether pupal productivity indices may be used as epidemiological indicators of risk of dengue transmission.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 822
Author(s):  
Charalampos S. Ioannou ◽  
Christos Hadjichristodoulou ◽  
Varvara A. Mouchtouri ◽  
Nikos T. Papadopoulos

Aedes albopictus is an invasive mosquito species responsible for local transmission of chikungunya and dengue viruses in Europe. In the absence of available treatments, insecticides-based control remains one of the most important viable strategies to prevent emerging problems. Diflubenzuron (DFB) and Bacillus thuringiensis var. israelensis (Bti) are among the most commonly used larvicides for Ae. albopictus control with consequent concerns for the potential development of resistance. Studies on the resistance emergence in Ae. albopictus and its persistence in the wild to both DFB and Bti are essential for the efficient and sustainable planning of the control programmes. In this context, larvae from a recently laboratory established population were subjected to increasing selective pressure for nine successive generations using both DFB and Bti. The resistance levels and the overwintering success of the selected populations relative to control (colonies that received no selection) were determined. Results revealed an 8.5- and 1.6-fold increase on the resistance levels following selection with DFB and Bti, respectively. The selection process to both larvicides had no apparent impacts on the overwintering capability relative to control, suggesting the successful persistence of the selected individuals in the wild on an annual base.


2020 ◽  
Vol 35 ◽  
pp. 101691 ◽  
Author(s):  
Romeo Bellini ◽  
Antonios Michaelakis ◽  
Dušan Petrić ◽  
Francis Schaffner ◽  
Bulent Alten ◽  
...  

Insects ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 173 ◽  
Author(s):  
Samuel Karungu ◽  
Evans Atoni ◽  
Joseph Ogalo ◽  
Caroline Mwaliko ◽  
Bernard Agwanda ◽  
...  

Kenya is among the most affected tropical countries with pathogen transmitting Culicidae vectors. For decades, insect vectors have contributed to the emergence and distribution of viral and parasitic pathogens. Outbreaks and diseases have a great impact on a country’s economy, as resources that would otherwise be used for developmental projects are redirected to curb hospitalization cases and manage outbreaks. Infected invasive mosquito species have been shown to increasingly cross both local and global boarders due to the presence of increased environmental changes, trade, and tourism. In Kenya, there have been several mosquito-borne disease outbreaks such as the recent outbreaks along the coast of Kenya, involving chikungunya and dengue. This certainly calls for the implementation of strategies aimed at strengthening integrated vector management programs. In this review, we look at mosquitoes of public health concern in Kenya, while highlighting the pathogens they have been linked with over the years and across various regions. In addition, the major strategies that have previously been used in mosquito control and what more could be done to reduce or combat the menace caused by these hematophagous vectors are presented.


2020 ◽  
Vol 14 (3) ◽  
pp. e0008130 ◽  
Author(s):  
Bixing Huang ◽  
Brian L. Montgomery ◽  
Rebecca Adamczyk ◽  
Gerhard Ehlers ◽  
Andrew F. van den Hurk ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Nayana Gunathilaka ◽  
Koshila Ranasinghe ◽  
Deepika Amarasinghe ◽  
Wasana Rodrigo ◽  
Harendra Mallawarachchi ◽  
...  

Background. Larval and adult mosquito stages harbor different extracellular microbes exhibiting various functions in their digestive tract including host-parasite interactions. Midgut symbiotic bacteria can be genetically exploited to express molecules within the vectors, altering vector competency and potential for disease transmission. Therefore, identification of mosquito gut inhabiting microbiota is of ample importance before developing novel vector control strategies that involve modification of vectors. Method. Adult mosquitoes of Culex tritaeniorhynchus, Culex gelidus, and Mansonia annulifera were collected from selected Medical Officer of Health (MOH) areas in the Gampaha district of Sri Lanka. Midgut lysates of the field-caught non-blood-fed female mosquitoes were cultured in Plate Count Agar medium, and Prokaryotic 16S ribosomal RNA partial genes of the isolated bacteria colonies were amplified followed by DNA sequencing. Diversity indices were used to assess the diversity and richness of the bacterial isolates in three mosquito species. The distribution pattern of bacterial isolates between different mosquito species was assessed by Distance-Based Redundancy Analysis (dbRDA). Results. A total of 20 bacterial species (Staphylococcus pasteuri, Bacillus megaterium, Staphylococcus cohnii, Pantoea dispersa, Staphylococcus chromogenes, Bacillus aquimaris, Staphylococcus arlettae, Staphylococcus sciuri, Staphylococcus warneri, Moraxella osloensis, Enterobacter sp., Klebsiella michiganensis, Staphylococcus hominis, Staphylococcus saprophyticus, Streptomyces sp., Bacillus niacin, Cedecea neteri, Micrococcus luteus, Lysinibacillus sphaericus, and Bacillus licheniformis) were identified. All of these species belonged to three phyla, Proteobacteria, Firmicutes, and Actinobacteria, out of which phylum Firmicutes (71.1%) was the most prominent. The least number of species was recorded from Actinobacteria. The relative distribution of midgut microbes in different mosquito species differed significantly among mosquito species (Chi-square, χ2=486.091; df=36; P≤0.001). Midgut microbiota of Cx. tritaeniorhynchus and Cx. gelidus indicated a similarity of 21.51%, while Ma. annulifera shared a similarity of 6.92% with the cluster of above two species. The gut microbiota of Cx. tritaeniorhynchus was also significantly more diverse and more evenly distributed compared to Ma. annulifera. Simpson’s diversity, Margalef’s diversity, and Menhinick’s diversity indices were higher in Cx. gelidus. Of the recorded species, P. dispersa and strains of nonpathogenic species in Bacillaceae family (B. megaterium, B. niacini, B. licheniformis, and L. sphaericus) can be recommended as potential candidates for paratransgenesis. Conclusion. The relative distribution of midgut microbes in different mosquito species differed significantly among the three studied adult mosquito species. The present data strongly encourage further investigations to explore the potential usage of these microbes through paratransgenic approach for novel eco-friendly vector control strategies.


Sign in / Sign up

Export Citation Format

Share Document