scholarly journals Optimization Of The Rotational Speed Of Homogenizers In The Production Of VCO Emulsion Using Soy Lecithin As The Emulsifier

Author(s):  
Andi Haslinah ◽  
Setyawati Yani ◽  
Andi Aladin
Author(s):  
Andrean George W

Abstract - Control and monitoring of the rotational speed of a wheel (DC motor) in a process system is very important role in the implementation of the industry. PWM control and monitoring for wheel rotational speed on a pair of DC motors uses computer interface devices where in the industry this is needed to facilitate operators in controlling and monitoring motor speed. In order to obtain the best controller, tuning the Integral Derifative (PID) controller parameter is done. In this tuning we can know the value of proportional gain (Kp), integral time (Ti) and derivative time (Td). The PID controller will give action to the DC motor control based on the error obtained, the desired DC motor rotation value is called the set point. LabVIEW software is used as a PE monitor, motor speed control. Keyword : LabView, Motor DC, Arduino, LabView, PID.


Author(s):  
Yusup Hendronursito ◽  
Muhammad Amin ◽  
Slamet Sumardi ◽  
Roniyus Marjunus ◽  
Frista Clarasati ◽  
...  

This study was aimed to increase granite's silica content using the leaching process with HCl concentration variation. The granite used in this study came from Lematang, South Lampung. This study aims to determine the effect of variations in HCl concentration, particle size, and rotational speed on the crystalline phase and chemical elements formed in the silica product produced from granite. The HCl concentration variations were 6.0 M, 7.2 M, 8.4 M, and 9.6 M, the variation in particle size used was 270 and 400 mesh. Variations in rotational speed during leaching were 500 and 750 rpm. Granite powder was calcined at 1000 ºC for 2 hours. Characterization was performed using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP- OES). The results showed that the silica content increased with increasing HCl concentration, the finer the particle size, and the higher the rotational speed. XRF analysis showed that the silica with the highest purity was leached with 9.6 HCl with a particle size of 400 mesh and a rotational speed of of 750 rpm, which was 73.49%. Based on the results above, by leaching using HCl, the Si content can increase from before. The XRD diffractogram showed that the granite powder formed the Quartz phase.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 410 ◽  
Author(s):  
Kristine Bach Korsholm Knudsen ◽  
Christine Heerup ◽  
Tine Røngaard Stange Jensen ◽  
Xiaolu Geng ◽  
Nikolaj Drachmann ◽  
...  

Efficient lipid digestion in formula-fed infants is required to ensure the availability of fatty acids for normal organ development. Previous studies suggest that the efficiency of lipid digestion may depend on whether lipids are emulsified with soy lecithin or fractions derived from bovine milk. This study, therefore, aimed to determine whether emulsification with bovine milk-derived emulsifiers or soy lecithin (SL) influenced lipid digestion in vitro and in vivo. Lipid digestibility was determined in vitro in oil-in-water emulsions using four different milk-derived emulsifiers or SL, and the ultrastructural appearance of the emulsions was assessed using electron microscopy. Subsequently, selected emulsions were added to a base diet and fed to preterm neonatal piglets. Initially, preterm pigs equipped with an ileostomy were fed experimental formulas for seven days and stoma output was collected quantitatively. Next, lipid absorption kinetics was studied in preterm pigs given pure emulsions. Finally, complete formulas with different emulsions were fed for four days, and the post-bolus plasma triglyceride level was determined. Milk-derived emulsifiers (containing protein and phospholipids from milk fat globule membranes and extracellular vesicles) showed increased effects on fat digestion compared to SL in an in vitro digestion model. Further, milk-derived emulsifiers significantly increased the digestion of triglyceride in the preterm piglet model compared with SL. Ultra-structural images indicated a more regular and smooth surface of fat droplets emulsified with milk-derived emulsifiers relative to SL. We conclude that, relative to SL, milk-derived emulsifiers lead to a different surface ultrastructure on the lipid droplets, and increase lipid digestion.


2021 ◽  
Vol 13 (14) ◽  
pp. 7998
Author(s):  
Maxime Binama ◽  
Kan Kan ◽  
Hui-Xiang Chen ◽  
Yuan Zheng ◽  
Daqing Zhou ◽  
...  

The utilization of pump as turbines (PATs) within water distribution systems for energy regulation and hydroelectricity generation purposes has increasingly attracted the energy field players’ attention. However, its power production efficiency still faces difficulties due to PAT’s lack of flow control ability in such dynamic systems. This has eventually led to the introduction of the so-called “variable operating strategy” or VOS, where the impeller rotational speed may be controlled to satisfy the system-required flow conditions. Taking from these grounds, this study numerically investigates PAT eventual flow structures formation mechanism, especially when subjected to varying impeller rotational speed. CFD-backed numerical simulations were conducted on PAT flow under four operating conditions (1.00 QBEP, 0.82 QBEP, 0.74 QBEP, and 0.55 QBEP), considering five impeller rotational speeds (110 rpm, 130 rpm, 150 rpm, 170 rpm, and 190 rpm). Study results have shown that both PAT’s flow and pressure fields deteriorate with the machine influx decrease, where the impeller rotational speed increase is found to alleviate PAT pressure pulsation levels under high-flow operating conditions, while it worsens them under part-load conditions. This study’s results add value to a thorough understanding of PAT flow dynamics, which, in a long run, contributes to the solution of the so-far existent technical issues.


2021 ◽  
Vol 1909 (1) ◽  
pp. 012050
Author(s):  
Sota Kondo ◽  
Moena Kanamaru ◽  
Satoshi Kawasaki ◽  
Yuka Iga

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 358
Author(s):  
Kuidong Gao ◽  
Xiaodi Zhang ◽  
Liqing Sun ◽  
Qingliang Zeng ◽  
Zhihai Liu

The poor loading performance of shearer drums restricts the development and production efficiency of coal in thin coal seams. Changing operation and structural parameters can improve the drum’s loading performance to some extent, but the effect is not obvious. A two-segment differential rotational speed drum (TDRSD) was proposed after analyzing the drum’s influence mechanism on coal particles. To further reveal the drum’s coal loading principle, the velocity, particles distribution, and loading rate were analyzed. The effect of the matching relationship of the rotational speed and helix angle between the front and rear drum are also discussed. The results show that a lower front drum rotational speed had a positive impact on improving the loading performance, and the loading rate first increases and then decreases with the increase in rear drum rotational speed. The optimal loading performance was obtained in the range 60–67.5 rpm. The front drum’s helix angle had no evident effect on loading performance, and the loading rate increase with the increase in the rear drum’s helix angle. The results provide a reference and guidance for operation parameters selection, structure design, and drum optimization.


Sign in / Sign up

Export Citation Format

Share Document