Processing of granite quarry solid waste into industrial high silica materials using leaching process with HCl concentration variation

Author(s):  
Yusup Hendronursito ◽  
Muhammad Amin ◽  
Slamet Sumardi ◽  
Roniyus Marjunus ◽  
Frista Clarasati ◽  
...  

This study was aimed to increase granite's silica content using the leaching process with HCl concentration variation. The granite used in this study came from Lematang, South Lampung. This study aims to determine the effect of variations in HCl concentration, particle size, and rotational speed on the crystalline phase and chemical elements formed in the silica product produced from granite. The HCl concentration variations were 6.0 M, 7.2 M, 8.4 M, and 9.6 M, the variation in particle size used was 270 and 400 mesh. Variations in rotational speed during leaching were 500 and 750 rpm. Granite powder was calcined at 1000 ºC for 2 hours. Characterization was performed using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP- OES). The results showed that the silica content increased with increasing HCl concentration, the finer the particle size, and the higher the rotational speed. XRF analysis showed that the silica with the highest purity was leached with 9.6 HCl with a particle size of 400 mesh and a rotational speed of of 750 rpm, which was 73.49%. Based on the results above, by leaching using HCl, the Si content can increase from before. The XRD diffractogram showed that the granite powder formed the Quartz phase.

2014 ◽  
Vol 997 ◽  
pp. 542-545
Author(s):  
Yan Ru Chen ◽  
Yi Chen Lu ◽  
Xiao Min Lian ◽  
Chao Yang Li ◽  
Shui Lin Zheng

Superfine ground calcium carbonate (GCC) produced by carbonate minerals is a widely used inorganic powder material. In order to get a finer GCC powder with narrow distribution span, the effect of rotational speed and media density on ground GCC were studied by dry grinding GCC in a planetary ball mill under different rotational speed and various media density. The grinding limit-particle size and distribution of grinding calcium carbonate were measured by centrifugal sedimentation granulometer. The structure of GCC was measured by X-ray diffraction. The result shows that low rotational speed and high-density media is conducive to get a product with smaller particle size and narrow size distribution; crystal plane (012) and (122) are more stable than (018) and (116).


Minerals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 357 ◽  
Author(s):  
Stefanos Karampelas ◽  
Fatima Mohamed ◽  
Hasan Abdulla ◽  
Fatema Almahmood ◽  
Latifa Flamarzi ◽  
...  

The present study applied Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) on a large number of natural and cultured pearls from saltwater and freshwater environments, which revealed that freshwater (natural and cultured) pearls contain relatively higher quantities of manganese (Mn) and barium (Ba) and lower sodium (Na), magnesium (Mg) and strontium (Sr) than saltwater (natural and cultured) pearls. A few correlations between the host animal’s species and chemical elements were found; some samples from Pinctada maxima (P. maxima) are the only studied saltwater samples with 55Mn >20 ppmw, while some P. radiata are the only studied saltwater samples with 24Mg <65 ppmw and some of the P. imbricata are the only studied saltwater samples with 137Ba >4.5 ppmw. X-ray luminescence reactions of the studied samples has confirmed a correlation between its yellow-green intensity and manganese content in aragonite, where the higher Mn2+ content, the more intense the yellow-green luminescence becomes. Luminescence intensity in some cases is lower even if manganese increases, either because of pigments or because of manganese self-quenching. X-ray luminescence can be applied in most cases to separate saltwater from freshwater samples; only samples with low manganese content (55Mn <50 ppmw) might be challenging to identify. One of the studied natural freshwater pearls contained vaterite sections which react by turning orange under X-ray due to a different coordination of Mn2+ in vaterite than that in aragonite.


2011 ◽  
Vol 194-196 ◽  
pp. 2164-2168 ◽  
Author(s):  
Bai Kun Wang ◽  
Hao Ding ◽  
Yun Xing Zheng ◽  
Ning Liang

The amorphous silica was prepared from the alkali wastewater rich in Na2O•nSiO2 produced in manufacturing process of zirconium oxychloride (ZrOCl2). The composition and microstructure of amorphous silica were studied by X-ray diffraction, X-ray fluorescence and scanning electron microscope, respectively. The results showed that the amorphous silica was mainly composed of uncrystallized substance, and the silica content was 96.4%. Its whiteness was 97.5% and the particle size was between 100nm and 200nm without agglomeration. The specific surface area of the amorphous silica was 531.9 m2/g, and its pore volume and diameter were 0.945 cm3/g and 4.94 nm, respectively.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 433
Author(s):  
Andrei Shoppert ◽  
Irina Loginova ◽  
Julia Napol’skikh ◽  
Aleksey Kyrchikov ◽  
Leonid Chaikin ◽  
...  

Bauxite residue, known as “red mud,” is a potential raw material for extracting rare-earth elements (REEs). The main REEs (Sc, Y, La, Ce, Nd, Nb, and Sm) from the raw bauxite are concentrated in RM after the Bayer leaching process. The earlier worldwide studies were focused on the scandium (Sc) extraction from RM by concentrated acids to enhance the extraction degree. This leads to the dissolution of major oxides (Fe2O3 and Al2O3) from RM. This article studies the possibility of selective Sc extraction from alkali fusion red mud (RMF) by diluted nitric acid (HNO3) leaching at pH ≥ 2 to prevent co-dissolution of Fe2O3. RMF samples were analyzed by X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), electron probe microanalysis (EPMA), and inductively coupled plasma mass spectrometry (ICP-MS). It was revealed that Sc concentration in RMF can reach up to 140–150 mg kg−1. Sc extraction was 71.2% at RMF leaching by HNO3 at pH 2 and 80 °C during 90 min. The leaching solution contained 8 mg L−1 Sc and a high amount of other REEs in the presence of relatively low concentrations of impurity elements such as Fe, Al, Ti, Ca, etc. The kinetic analysis of experimental data by the shrinking core model showed that Sc leaching process is limited by the interfacial diffusion and the diffusion through the product layer. The apparent activation energy (Ea) was 19.5 kJ/mol. The linear dependence of Sc extraction on magnesium (Mg) extraction was revealed. According to EPMA of RMF, Sc is associated with iron minerals rather than Mg. This allows us to conclude that Mg acts as a leaching agent for the extraction of Sc presented in the RMF in an ion-exchangeable phase.


2011 ◽  
Vol 399-401 ◽  
pp. 731-735 ◽  
Author(s):  
Jian Hua Liu ◽  
Tao Huang ◽  
Huan Ran Zhang ◽  
Rui Xiang Wang

Precursor of tungsten was obtained by spray drying process with high purity APT crystal liquor as material. The precursor was analysized by electron microscopy and X-ray. A suitable spray drying process was found through the morphology and powder structure. The influence of atomization disk rotational speed, the concentration ratio of ammonia to WO3 in APT liquor and APT liquor’s concentration on particle size, structure and morphology of the ball precursor were studied. Uniformity superfine WO3 was obtained from precursor by calcined.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Wenyue Qi ◽  
Jixiong Zhang ◽  
Qiang Zhang

The compression mechanical properties of coal gangues subjected to acidic immersion were examined using a cylinder and a YAS-500 electrohydraulic servotesting system in order to investigate the effects of pH and particle size on its compaction stress-strain and stress-compaction relationships. The evolutionary trends of the leaching solution’s pH at various immersion times during the coal gangue corrosion process were analyzed. Then, inductively coupled plasma optical emission spectroscopy (ICP-OES) was performed on the leaching solutions to determine their chemical compositions and concentrations. An X-ray diffractometer (XRD) and X-ray fluorescence (XRF) spectroscopy also performed qualitative and quantitative analyses of the coal gangues samples. The mechanisms of hydrochemical corrosion in coal gangues were ultimately elucidated by analyzing these results, taking into consideration the chemical reactions of the acidic solutions and coal gangues. The results indicate that hydrochemical damage in coal gangues is more sensitive to small particle size and stronger acidity. The compressive mechanical properties of coal gangues that had been immersed demonstrated that their bearing capacity decreased as the particle sizes decreased and acidity increased. It was also established that acid leaching changes the mineral composition, particles, and pores of coal gangues, thus degrading their compressive mechanical properties.


Author(s):  
Andrei Shoppert ◽  
Irina Loginova ◽  
Julia Napol’skikh ◽  
Aleksey Kyrchikov ◽  
Leonid Chaikin ◽  
...  

One of the potential sources of rare-earth elements (REEs) is the solid waste from alumina industry - bauxite residue, known as &ldquo;red mud&rdquo; (RM). The main REEs from the raw bauxite are concentrated in RM after the Bayer leaching process. The earlier worldwide studies were focused on the scandium (Sc) extraction from RM by concentrated acids to enhance the extraction degree. This leads to the dissolution of major oxides (Fe2O3 and Al2O3) from RM. This article studies the possibility of selective Sc extraction from alkali fusion red mud (RMF) by diluted nitric acid (HNO3) leaching at pH &ge; 2 to prevent co-dissolution of Fe2O3. RMF samples have been analyzed by X-ray fluorescence spectrometry (XRF), X-ray diffraction (XRD), electron probe microanalysis (EPMA), and inductively coupled plasma mass spectrometry (ICP-MS). Sc extraction has been found to be 71.2 % at RMF leaching by HNO3 at pH=2 and at 80 &deg;C during 90 min. The kinetic analysis of experimental data by the shrinking core model has shown that Sc leaching process is limited by the interfacial diffusion and the diffusion through the product layer. The apparent activation energy (Ea) was 19.5 kJ/mol. We have established that according to EPMA of RMF, Sc is associated with iron minerals; it could act as the product layer. The linear dependence of Sc extraction of magnesium (Mg) extraction has been revealed. This fact indicates that Mg can act as a leaching agent of Sc presented in RMF by ion-exchangeable phase.


Author(s):  
Nevenka Mijatovic ◽  
Anja Terzic ◽  
Lato Pezo ◽  
Ljiljana Milicic ◽  
Dragana Zivojinovic

A modification of analytical procedure for energy-dispersive X-ray fluorescence (EDXRF) quantification of ten chemical elements (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Zn) in the leachates obtained from cement binders was developed. Twenty-nine testing samples were used in the experiment. All samples were based on Portland cement. Fly ash of different origin, zeolite and bentonite were employed as mineral additives in the cement binders. Distilled water was used as leachate. Validation of the modified EDXRF procedure was conducted in terms of limits of detection and quantification, working range, linearity, selectivity, precision, trueness, and robustness. Traceability of the procedure was established using certified reference materials. Uncertainty of measurement was confirmed via ?in-house? laboratory validation approach. The expanded uncertainties for ten analysed elements were obtained for entire working range of EDXRF method. Robustness of the modified EDXRF procedure was assessed by means of chemometric in-house approach. The results obtained by modified X-ray fluorescence method were additionally correlated to those acquired by inductively coupled plasma optical emission spectrometry to confirm that EDXRF can be used as an effective and reliable alternative method for analysis of cement leachates.


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1219
Author(s):  
Chuncheng Zhu ◽  
Yu Lei ◽  
Xinbo Hu ◽  
Qian Xu ◽  
Xingli Zou ◽  
...  

Using ferric chloride as an oxidant, here, we investigated the leaching effect of low-nickel matte in a flow field produced by mechanical agitation. The factors affecting a leaching reaction, such as stirring speed, leaching time, low-nickel matte particle size, and inert abrasive quartz sand, were studied. X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), a laser particle size analyzer, optical microscopy (OM), a scanning electron microscopy (SEM) with an energy dispersive X-ray detector (EDS), and a Raman spectrometer were used to characterize the materials before and after the leaching reaction. The contents of the main metal ions such as Ni, Cu, and Co in the leaching solution were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Using the control variable method, the optimal experimental conditions were as follows: 2 mol/L FeCl3—0.5 mol/L HCl-H2O system with low-nickel matte and quartz sand (mass ratio is 1:5) and leaching at 90 °C for 8 h. The results showed that the blocking effect of the solid product sulfur layer was effectively removed and continuous leaching was realized. The leaching efficiencies of Ni, Cu, and Co were 98.9%, 99.3%, and 98.1%, respectively.


Author(s):  
Judith M. Brock ◽  
Max T. Otten

A knowledge of the distribution of chemical elements in a specimen is often highly useful. In materials science specimens features such as grain boundaries and precipitates generally force a certain order on mental distribution, so that a single profile away from the boundary or precipitate gives a full description of all relevant data. No such simplicity can be assumed in life science specimens, where elements can occur various combinations and in different concentrations in tissue. In the latter case a two-dimensional elemental-distribution image is required to describe the material adequately. X-ray mapping provides such of the distribution of elements.The big disadvantage of x-ray mapping hitherto has been one requirement: the transmission electron microscope must have the scanning function. In cases where the STEM functionality – to record scanning images using a variety of STEM detectors – is not used, but only x-ray mapping is intended, a significant investment must still be made in the scanning system: electronics that drive the beam, detectors for generating the scanning images, and monitors for displaying and recording the images.


Sign in / Sign up

Export Citation Format

Share Document