scholarly journals Taxonomical Structure of Black Soil Bacterial Community on the Level of Phyla

Author(s):  
Anastasiya Nechayeva ◽  
Viktoriia Iatsenko ◽  
Konstantin Boyarshin ◽  
Violetta Klyueva ◽  
Olga Bespalova ◽  
...  
PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256970
Author(s):  
Lijun Cai ◽  
Zhenhua Guo ◽  
Jingtao Zhang ◽  
Zhijia Gai ◽  
Jingqi Liu ◽  
...  

Soil microorganisms are important components of agricultural ecosystems; they are important in agricultural soil nutrient cycle and are easily affected by soil tillage. The response of soil microbial community to tillage is very complex, and the effect of the no tillage and residue mulching method on soil microbial diversity remains unclear. In 2019, the soil was collected from an experimental field after 10 years of continuous cultivation in the black soil area of the Sanjiang Plain in Northeastern China. In this study, the diversity and composition of the soil bacterial community and their relationship with soil properties were explored via high-throughput sequencing under no tillage with four residue mulching treatments. No tillage with 60% residue mulching (NTR3) significantly increased the alpha diversity of the rhizosphere soil bacteria and changed the composition of the bacterial community—consistent with changes in soil physicochemical properties. Proteobacteria, Acidobacteria, and Actinobacteria were the dominant phyla in the sample soil. Soil physicochemical properties explained 80.6% of the changes in soil diversity and composition, of which soil organic carbon, soil pH, and soil temperature were the principal contributors. Our results suggest that no tillage and residue mulching is conducive to increasing soil organic carbon and soil nutrient content, which is a beneficial conservation tillage measure for black soil protection in Sanjiang Plain of Northeast China. The no tillage with residue mulching, especially 60% residue mulching, alters soil bacterial community and highlights the importance of soil physicochemical properties in shaping the diversity and composition of the soil bacterial community. Our findings contribute to a broad understanding of the effects of no tillage and residue mulching on bacterial community differences and provide a scientific basis for the optimization of no tillage measures and sustainable utilization of the black soil of the Sanjiang Plain in Northeastern China.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zuren Li ◽  
Jincai Han ◽  
Haodong Bai ◽  
Di Peng ◽  
Lifeng Wang ◽  
...  

AbstractApplication of a novel bioorganic fertilizer (BIO) has been effectively used to inhibit weeds in rice paddies. To identify changes in soil bacterial community and enzymes in response to BIO treatments, field experiments were carried out in five major rice-growing areas in China. The dominant phylogenetic groups recorded included Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Acidobacteria. Anaeromyxobacter, Bacteroides, Bifidobacterium, Escherichia- Shigella, Geobacter and Haliangium were significantly different between BIO-treatment and untreated control and aided in general function (R), amino acid transport, metabolism (E) and transcription (K) clusters. The soil chemical properties and enzyme activities were less affected by BIO at these study sites. RDA analysis showed that soil bacterial community had a significant positive correlations among northern latitude, eastern longitude, exchangeable K, total K, total P, soil pH, and total N, except for organic matter, hydrolytic N and extractable P. Overall, our work showed that application of BIO does not alter the main community structure and functional diversity of soil bacteria in rice paddies and should be encouraged for use as a sustainable weed management strategy.


2021 ◽  
Vol 167 ◽  
pp. 104096
Author(s):  
Lea H. Hiltunen ◽  
Oili Tarvainen ◽  
Jani Kelloniemi ◽  
Jaakko Tanskanen ◽  
Jouni Karhu ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 918
Author(s):  
Lingzi Mo ◽  
Augusto Zanella ◽  
Xiaohua Chen ◽  
Bin Peng ◽  
Jiahui Lin ◽  
...  

Continuing nitrogen (N) deposition has a wide-ranging impact on terrestrial ecosystems. To test the hypothesis that, under N deposition, bacterial communities could suffer a negative impact, and in a relatively short timeframe, an experiment was carried out for a year in an urban area featuring a cover of Bermuda grass (Cynodon dactylon) and simulating environmental N deposition. NH4NO3 was added as external N source, with four dosages (N0 = 0 kg N ha−2 y−1, N1 = 50 kg N ha−2 y−1, N2 = 100 kg N ha−2 y−1, N3 = 150 kg N ha−2 y−1). We analyzed the bacterial community composition after soil DNA extraction through the pyrosequencing of the 16S rRNA gene amplicons. N deposition resulted in soil bacterial community changes at a clear dosage-dependent rate. Soil bacterial diversity and evenness showed a clear trend of time-dependent decline under repeated N application. Ammonium nitrogen enrichment, either directly or in relation to pH decrease, resulted in the main environmental factor related to the shift of taxa proportions within the urban green space soil bacterial community and qualified as a putative important driver of bacterial diversity abatement. Such an impact on soil life induced by N deposition may pose a serious threat to urban soil ecosystem stability and surrounding areas.


2015 ◽  
Vol 91 (5) ◽  
Author(s):  
Alexandra B. Wolf ◽  
Max-Bernhard Rudnick ◽  
Wietse de Boer ◽  
George A. Kowalchuk

Sign in / Sign up

Export Citation Format

Share Document