Research of technologies for creating three-dimensional (3D) models of monuments, based on photography, stereo photo and laser scanning

2018 ◽  
Vol 62 (6) ◽  
pp. 643-648
Author(s):  
Ukolova A.V. ◽  
◽  
Senchurin E.E. ◽  
Author(s):  
M. Marčiš ◽  
P. Barták ◽  
D. Valaška ◽  
M. Fraštia ◽  
O. Trhan

In the documentation of cultural heritage, we can encounter three dimensional shapes and structures which are complicated to measure. Such objects are for example spiral staircases, timber roof trusses, historical furniture or folk costume where it is nearly impossible to effectively use the traditional surveying or the terrestrial laser scanning due to the shape of the object, its dimensions and the crowded environment. The actual methods of digital photogrammetry can be very helpful in such cases with the emphasis on the automated processing of the extensive image data. The created high resolution 3D models and 2D orthophotos are very important for the documentation of architectural elements and they can serve as an ideal base for the vectorization and 2D drawing documentation. This contribution wants to describe the various usage of image based modelling in specific interior spaces and specific objects. The advantages and disadvantages of the photogrammetric measurement of such objects in comparison to other surveying methods are reviewed.


Spatium ◽  
2016 ◽  
pp. 30-36 ◽  
Author(s):  
Petar Pejic ◽  
Sonja Krasic

Digital three-dimensional models of the existing architectonic structures are created for the purpose of digitalization of the archive documents, presentation of buildings or an urban entity or for conducting various analyses and tests. Traditional methods for the creation of 3D models of the existing buildings assume manual measuring of their dimensions, using the photogrammetry method or laser scanning. Such approaches require considerable time spent in data acquisition or application of specific instruments and equipment. The goal of this paper is presentation of the procedure for the creation of 3D models of the existing structures using the globally available web resources and free software packages on standard PCs. This shortens the time of the production of a digital three-dimensional model of the structure considerably and excludes the physical presence at the location. In addition, precision of this method was tested and compared with the results acquired in a previous research.


Author(s):  
Jovana Radović

Within the last years terrestrial and airborne laser scanning has become a powerful technique for fast and efficient three-dimensional data acquisition of different kinds of objects. Airborne laser system (LiDAR) collects accurate georeferenced data of extremely large areas very quickly while the terrestrial laser scanner produces dense and geometrically accurate data. The combination of these two segments of laser scanning provides different areas of application. One of the applications is in the process of reconstruction of objects. Objects recorded with laser scanning technology and transferred into the final model represent the basis for building an object as it was original. In this paper, there will be shown two case studies based on usage of airborne and terrestrial laser scanning and processing of the data collected by them.


2018 ◽  
Vol 8 (2) ◽  
pp. 20170048 ◽  
Author(s):  
M. I. Disney ◽  
M. Boni Vicari ◽  
A. Burt ◽  
K. Calders ◽  
S. L. Lewis ◽  
...  

Terrestrial laser scanning (TLS) is providing exciting new ways to quantify tree and forest structure, particularly above-ground biomass (AGB). We show how TLS can address some of the key uncertainties and limitations of current approaches to estimating AGB based on empirical allometric scaling equations (ASEs) that underpin all large-scale estimates of AGB. TLS provides extremely detailed non-destructive measurements of tree form independent of tree size and shape. We show examples of three-dimensional (3D) TLS measurements from various tropical and temperate forests and describe how the resulting TLS point clouds can be used to produce quantitative 3D models of branch and trunk size, shape and distribution. These models can drastically improve estimates of AGB, provide new, improved large-scale ASEs, and deliver insights into a range of fundamental tree properties related to structure. Large quantities of detailed measurements of individual 3D tree structure also have the potential to open new and exciting avenues of research in areas where difficulties of measurement have until now prevented statistical approaches to detecting and understanding underlying patterns of scaling, form and function. We discuss these opportunities and some of the challenges that remain to be overcome to enable wider adoption of TLS methods.


2012 ◽  
Vol 594-597 ◽  
pp. 2398-2401
Author(s):  
Dong Ling Ma ◽  
Jian Cui ◽  
Fei Cai

This paper provides a scheme to construct three dimensional (3D) model fast using laser scanning data. In the approach, firstly, laser point cloud are scanned from different scan positions and the point cloud coming from neighbor scan stations are spliced automatically to combine a uniform point cloud model, and then feature lines are extracted through the point cloud, and the framework of the building are extracted to generate 3D models. At last, a conclusion can be drawn that 3D visualization model can be generated quickly using 3D laser scanning technology. The experiment result shows that it will bring the application model and technical advantage which traditional mapping way can not have.


Author(s):  
P. Delis ◽  
M. Wojtkowska ◽  
P. Nerc ◽  
I. Ewiak ◽  
A. Lada

Textured three dimensional models are currently the one of the standard methods of representing the results of photogrammetric works. A realistic 3D model combines the geometrical relations between the structure’s elements with realistic textures of each of its elements. Data used to create 3D models of structures can be derived from many different sources. The most commonly used tool for documentation purposes, is a digital camera and nowadays terrestrial laser scanning (TLS). Integration of data acquired from different sources allows modelling and visualization of 3D models historical structures. Additional aspect of data integration is possibility of complementing of missing points for example in point clouds. The paper shows the possibility of integrating data from terrestrial laser scanning with digital imagery and an analysis of the accuracy of the presented methods. The paper describes results obtained from raw data consisting of a point cloud measured using terrestrial laser scanning acquired from a Leica ScanStation2 and digital imagery taken using a Kodak DCS Pro 14N camera. The studied structure is the ruins of the Ilza castle in Poland.


2018 ◽  
Vol 939 (9) ◽  
pp. 52-63
Author(s):  
M.A. Altyntsev ◽  
A.V. Chernov

The authors present the results of theoretical and experimental studies on the use of laser scanning technology for the 3D-modeling of real estate objects in the cadastre. The result of the theoretical part of the research was a set of parameters for 3D modeling of real estate objects influencing the choice of the scanning method (ground, air or mobile), which showed that when creating separate 3D models of real estate objects (buildings, structures, premises and objects of unfinished construction) the method of ground-based laser scanning should be used. Based on the theoretical part, an experiment on 3D-modeling of a typical real estate object (building) was performed on the basis of data obtained with the method of ground- based laser scanning. The model of the real estate object was built with various degrees of detail to demonstrate its accuracy characteristics, depending on the distance from the scanner stations, the use of photographic materials, etc. The results of the experimental part of the studies show that the model obtained is in full conformity with the current requirements of the legislation in the field of cadastre. The proposed solution can be used as a methodological basis for constructing three-dimensional models in the transition of the Russian Federation to a 3D-cadastre system.


Author(s):  
Nikolay Kanashyn ◽  
Andrey Nikitchyn ◽  
Dmytriy Afonyn

Objective: To state 3D modeling application experience in bridgeworks reconstruction by the example of Palace Bridge in Saint Petersburg. Methods: It was shown that one of the possible spheres of bridge 3D models application was the acquisition of spatial data of bridge constructions and components’ arrangement, as well as the analysis of main axis position with respect to each other. The technology of acquiring the initial data for modeling was given, the essence of which is in composite application of surface laser scanning, electronic tacheometer line and angle measurements, and measurement of difference in elevation by digital levelling instrument. Order of processing field evidence was stated, as well as the main used software products – CREDO_DAT, X-TOOLS, Autodesk AutoCAD. Results: Fragments of 3D facility models. Practical importance: Opportunity and operability of 3D models application in the process of bridgework reconstruction. The article might be of interest for bridgework design engineers, as well as students and postgraduates, studying the construction and maintenance of bridgeworks.


Sensor Review ◽  
2018 ◽  
Vol 38 (3) ◽  
pp. 282-288 ◽  
Author(s):  
Abdalmenem Owda ◽  
José Balsa-Barreiro ◽  
Dieter Fritsch

Purpose Representative cultural heritage sites and monuments around the world have been lost or damaged by natural disasters, human conflicts and daily erosion and deterioration. Documentation and digital preservation by using three-dimensional (3D) modeling techniques enables to ensure the knowledge and access for future generations. Efficient working methods and techniques should be proposed for this purpose. Design/methodology/approach In this paper, a methodology for the generation of 3D photorealistic models of representative historical buildings is introduced, for using data are obtained using terrestrial laser scanning systems and photogrammetry. Findings In this paper, an approach to reconstruct 3D photorealistic models by using laser scanning and photogrammetric data is shown. Combination of data from both sources offers an improved solution for 3D reconstruction of historical buildings, sites and places. Integration of 3D models into virtual globes and/or software applications can ensure digital preservation and knowledge for next generations. Research limitations/implications Results obtained in a concrete building are shown. However, each building or studied area can show some other different drawbacks. Practical implications The study enables to generate 3D and four-dimensional models of most valuable buildings and contribute to the preservation and documentation of the cultural heritage. Social implications The study enables digital documentation and preservation of cultural heritage. Originality/value A proper solution at field (in a real and complicated case) is explained, in addition to the results, which are shown.


2014 ◽  
Vol 2 (4) ◽  
pp. 285-297 ◽  
Author(s):  
Matthew Magnani

AbstractAlthough alternatives have become available, pen and ink drawings of stone tools dominate archaeological publications. Despite the existence of a conventional illustration framework, the work produced by illustrators can be inconsistent and hinges on skill level and time commitment. Discussions going back to the 1880s critically question the use of illustrations for the purpose of scientific publication. Alternatives, such as laser scanning and photogrammetric modeling, are now available for displaying lithics. These alternatives can remove the subjectivity involved in artistic rendering, creating replicable results, regardless of who is collecting the data. In addition to creating more regularized and objective representations, there are a significant number of analytical and other benefits to adopting novel imaging techniques to depict stone tools in publications. A set of three-dimensional (3D) models are presented here to demonstrate the capabilities of laser scanning and, potentially, photogrammetric modeling as replacements for lithic illustration.


Sign in / Sign up

Export Citation Format

Share Document