scholarly journals Smart Grid Local Energy Trading Based Crypto Token Using Blockchain

Smart grid is envisioned to be the technology capable of scheduling user's energy requirement based on demand and decentralized nature. These challenges pose extreme pressure on finding advanced technologies and sustainable solutions for secure and reliable operations of the power system working inside the blockchain technology for managing exchange and trading of energy by means of specific tokens. For efficient utilization and functioning of the power grid we need a decentralised system which is transparent, trustless and makes transactions faster, there are a number of solutions proposed but none of them address the issue of transaction time in trade and penalty for defaulters. In this work we propose here an energy transaction network which implements blockchain technology for validating transaction of energy between producer/consumer or prosumer and saves energy and time using smart grids

2018 ◽  
Vol 7 (2.21) ◽  
pp. 185
Author(s):  
B Rubini ◽  
N Shanmugasundaram ◽  
S Pradeepkumar

Currently, different advanced technologies are implemented in power networks, with aim to improve power quality and reliability of grid operation. Naturally, Distribution Automation and Management Systems (DAMS), Smart power equipment, Advanced Metering Structure, Distributed Energy Resources and/or systems Demand Response are implemented in electricity distribution networks. Smart Grid Solutions coordinate different advanced technologies in an efficient energy management system. Outline Smart Grid Solutions, with investments of estimation, possible benefits and operation costs, is presented in this article, with estimation of cost-effectiveness in a lifetime of particular systems. 


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4862 ◽  
Author(s):  
Tejasvi Alladi ◽  
Vinay Chamola ◽  
Joel J. P. C. Rodrigues ◽  
Sergei A. Kozlov

With the integration of Wireless Sensor Networks and the Internet of Things, the smart grid is being projected as a solution for the challenges regarding electricity supply in the future. However, security and privacy issues in the consumption and trading of electricity data pose serious challenges in the adoption of the smart grid. To address these challenges, blockchain technology is being researched for applicability in the smart grid. In this paper, important application areas of blockchain in the smart grid are discussed. One use case of each area is discussed in detail, suggesting a suitable blockchain architecture, a sample block structure and the potential blockchain technicalities employed in it. The blockchain can be used for peer-to-peer energy trading, where a credit-based payment scheme can enhance the energy trading process. Efficient data aggregation schemes based on the blockchain technology can be used to overcome the challenges related to privacy and security in the grid. Energy distribution systems can also use blockchain to remotely control energy flow to a particular area by monitoring the usage statistics of that area. Further, blockchain-based frameworks can also help in the diagnosis and maintenance of smart grid equipment. We also discuss several commercial implementations of blockchain in the smart grid. Finally, various challenges to be addressed for integrating these two technologies are discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Yuxin Zhong ◽  
Mi Zhou ◽  
Jiangnan Li ◽  
Jiahui Chen ◽  
Yan Liu ◽  
...  

Authentication and authorization (A & A) mechanisms are critical to the security of Internet of Things (IoT) applications. Smart grid system processing and exchanging data without human intervention, known as smart grids, are well-known as IoT scenarios. Entities in such smart grid systems need to identify and validate one another and ensure the integrity of data exchange mechanisms. However, at present, most commonly used A & A protocols are centralized, resulting in security risks such as information leaks, illegal access, and identity theft. In this study, we propose a new distributed A & A protocol for smart grid networks based on blockchain technology to address with these risks. The proposed protocol integrates the decentralized authentication and immutable ledger characteristics of blockchain architectures suitable for power systems with a novel blockchain technique to realize both identity authentication and resource authorization for smart grid systems. We discuss the security of and threat models for prior A & A protocols and demonstrate how our protocol protects against these threats. We further demonstrate an approach to a real deployment of our A & A protocol using the FISCO consortium platform, applying algorithms from smart contract systems. Finally, we present the results of experimental simulations showing the efficacy and efficiency of our proposed protocol.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 431
Author(s):  
B Rubini ◽  
N Shanmugasundaram ◽  
S Pradeepkumar

Currently, different advanced technologies are implemented in power networks, with aim to improve power quality and reliability of grid operation. Naturally, Distribution Automation and Management Systems (DAMS), Smart power equipment, Advanced Metering Structure, Distributed Energy Resources and/or systems Demand Response are implemented in electricity distribution networks. Smart Grid Solutions coordinate different advanced technologies in an efficient energy management system. Outline Smart Grid Solutions, with investments of estimation, possible benefits and operation costs, is presented in this article, with estimation of cost-effectiveness in a lifetime of particular systems. 


2016 ◽  
Vol 12 (1) ◽  
Author(s):  
R. Herrera ◽  
L. Herrera
Keyword(s):  

Las smart grids han sido concebidas como la combinación de la red eléctrica tradicional (generación, transmisión, distribución, y comercialización, incluyendo las energías alternativas) con las redes de comunicaciones electrónicas. Este concepto revoluciona la administración, supervisión, y mantenimiento de la red eléctrica, volviéndola inteligente ante sobrecargas, caídas, apagones, caídas de tensión disminuyendo los tiempos de respuesta ante estos problemas. En este trabajo se analizan las tecnologías de redes de datos y comunicaciones electrónicas implicadas en este nuevo concepto de gestión eficiente de la electricidad. En la primera sección se abordan conceptos introductorios para entender las diferencias entre las redes eléctricas tradicionales y las smart grids, luego se realiza un análisis de las arquitecturas y requerimientos de diseño de una smart grid, para en la siguiente sección elaborar una revisión de las tecnologías de comunicaciones actualmente usadas en smart grids, para finalmente analizar los retos de diseño, líneas de investigación y estandarización actuales en las tecnologías de smart grids. En la última sección se anexan las conclusiones de la realización de este trabajo.


2020 ◽  
pp. 28-37
Author(s):  
Oleksandra V. Kubatko ◽  
Diana O. Yaryomenko ◽  
Mykola O. Kharchenko ◽  
Ismail Y. A. Almashaqbeh

Interruptions in electricity supply may have a series of failures that can affect banking, telecommunications, traffic, and safety sectors. Due to the two-way interactive abilities, Smart Grid allows consumers to automatically redirect on failure, or shut down of the equipment. Smart Grid technologies are the costly ones; however, due to the mitigation of possible problems, they are economically sound. Smart grids can't operate without smart meters, which may easily transmit real-time power consumption data to energy data centers, helping the consumer to make effective decisions about how much energy to use and at what time of day. Smart Grid meters do allow the consumer to track and reduce energy consumption bills during peak hours and increase the corresponding consumption during minimum hours. At a higher level of management (e.g., on the level of separate region or country), the Smart Grid distribution system operators have the opportunity to increase the reliability of power supply primarily by detecting or preventing emergencies. Ukraine's energy system is currently outdated and cannot withstand current loads. High levels of wear of the main and auxiliary equipment of the power system and uneven load distribution in the network often lead to emergencies and power outages. The Smart Grid achievements and energy sustainability are also related to the energy trilemma, which consists of key core dimensions– Energy Security, Energy Equity, and Environmental Sustainability. To be competitive in the world energy market, the country has to organize efficiently the cooperation of public/private actors, governments, economic and social agents, environmental issues, and individual consumer behaviors. Ukraine gained 61 positions out of 128 countries in a list in 2019 on the energy trilemma index. In general, Ukraine has a higher than average energy security position and lower than average energy equity, and environmental sustainability positions. Given the fact that the number of renewable energy sources is measured in hundreds and thousands, network management is complicated and requires a Smart Grid rapid response. Keywords: economic development, Smart Grid, electricity supply, economic and environmental efficiency.


Author(s):  
Cherrelle Eid ◽  
Rudi Hakvoort ◽  
Martin de Jong

The global transition towards sustainable, secure, and affordable electricity supply is driving changes in the consumption, production, and transportation of electricity. This chapter provides an overview of three main causes of political–economic tensions with smart grids in the United States, Europe, and China, namely industry structure, regulatory models, and the impact of energy policy. In all cases, the developments are motivated by the possible improvements in reliability and affordability yielded by smart grids, while sustainability of the electricity sector is not a central motivation. A holistic smart grid vision would open up possibilities for better integration of distributed energy resources. The authors recommend that smart grid investments should remain outside of the regulatory framework for utilities and distribution service operators in order to allow for such developments.


Urban Studies ◽  
2021 ◽  
pp. 004209802098571
Author(s):  
Francesca Pilo’

This article aims to contribute to recent debates on the politics of smart grids by exploring their installation in low-income areas in Kingston (Jamaica) and Rio de Janeiro (Brazil). To date, much of this debate has focused on forms of smart city experiments, mostly in the Global North, while less attention has been given to the implementation of smart grids in cities characterised by high levels of urban insecurity and socio-spatial inequality. This article illustrates how, in both contexts, the installation of smart metering is used as a security device that embeds the promise of protecting infrastructure and revenue and navigating complex relations framed along lines of socio-economic inequalities and urban sovereignty – here linked to configurations of state and non-state (criminal) territorial control and power. By unpacking the political workings of the smart grid within changing urban security contexts, including not only the rationalities that support its use but also the forms of resistance, contestation and socio-technical failure that emerge, the article argues for the importance of examining the conjunction between urban and infrastructural governance, including the reshaping of local power relations and spatial inequalities, through globally circulating devices.


Author(s):  
Chethan Parthasarathy ◽  
Hossein Hafezi ◽  
Hannu Laaksonen

AbstractLithium-ion battery energy storage systems (Li-ion BESS), due to their capability in providing both active and reactive power services, act as a bridging technology for efficient implementation of active network management (ANM) schemes for land-based grid applications. Due to higher integration of intermittent renewable energy sources in the distribution system, transient instability may induce power quality issues, mainly in terms of voltage fluctuations. In such situations, ANM schemes in the power network are a possible solution to maintain operation limits defined by grid codes. However, to implement ANM schemes effectively, integration and control of highly flexible Li-ion BESS play an important role, considering their performance characteristics and economics. Hence, in this paper, an energy management system (EMS) has been developed for implementing the ANM scheme, particularly focusing on the integration design of Li-ion BESS and the controllers managing them. Developed ANM scheme has been utilized to mitigate MV network issues (i.e. voltage stability and adherence to reactive power window). The efficiency of Li-ion BESS integration methodology, performance of the EMS controllers to implement ANM scheme and the effect of such ANM schemes on integration of Li-ion BESS, i.e. control of its grid-side converter (considering operation states and characteristics of the Li-ion BESS) and their coordination with the grid side controllers have been validated by means of simulation studies in the Sundom smart grid network, Vaasa, Finland.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1153
Author(s):  
Francesco Liberati ◽  
Emanuele Garone ◽  
Alessandro Di Giorgio

This paper presents a review of technical works in the field of cyber-physical attacks on the smart grid. The paper starts by discussing two reference mathematical frameworks proposed in the literature to model a smart grid under attack. Then, a review of cyber-physical attacks on the smart grid is presented, starting from works on false data injection attacks against state estimation. The aim is to present a systematic and quantitative discussion of the basic working principles of the attacks, also in terms of the inner smart grid vulnerabilities and dynamical properties exploited by the attack. The main contribution of the paper is the attempt to provide a unifying view, highlighting the fundamental aspects and the common working principles shared by the attack models, even when targeting different subsystems of the smart grid.


Sign in / Sign up

Export Citation Format

Share Document