scholarly journals Steady State Analysis and Impact of Benban Solar Park on The Egyptian Transmission System 9

Egypt is progressing from a power system with old traditional thermal power stations to a cutting-edge power system with a profoundly productive combined cycle power plants (Siemens 14.4 GW power plants) and an expanding portion of sustainable power sources. By 2022, Egypt intends to produce 20 % of its power from renewables [1]. Benban Solar Park venture is considered as the world's largest solar power plant, with total capacity of about 1.8 GW. The large renewable power stations, especially the solar power plants, have a significant effect on power systems stability due to rapid and large fluctuations in power generation caused by various factors such as the intermittency of solar irradiance, climate change and tripping out of power electronic based converters connected to the system. This paper presents the specialized technical details of the assessment and results to ensure that the Egyptian Transmission System (ETS) is capable to evacuate the renewable power in safe manner under various operating conditions

2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Doan Duc Tung ◽  
Le Van Dai ◽  
Le Cao Quyen

The subsynchronous resonance (SSR) is an important problem in the power system, and especially the series compensated transmission lines may cause SSR in the turbine generators, such that it leads to the electrical instability at subsynchronous frequencies and potential turbine-generator shaft failures. Taking the Vietnamese Vungang thermal plants as an example, a shaft failure of Vungang I thermal power unit has occurred on November 24, 2015, due to SSR. The main cause for this failure is a resonance caused by the series capacitors on the 500 kV grid. This paper analyzes the SSR based on the location of shaft cracks and turbine generator mode shape for Vungang I and II thermal power plants. On the basis of that, it develops a novel control strategy for each Flexible AC Transmission system (FACTS) device as the thyristor controlled series compensator (TCSC), static VAR compensator (SVC), and static synchronous compensator (STATCOM). Then they are comparable to one another in order to choose a feasible solution for mitigating the SSR. The effectiveness of the proposed control strategy is verified via time domain simulation of the Vietnamese 500/220 kV transmission system using EMTP-RV and PSS/E programs. The obtained results show that the proposed strategy for SVC can be applied to immediately solve the difficulties encountering in the Vietnamese power system.


2013 ◽  
Vol 281 ◽  
pp. 554-562 ◽  
Author(s):  
Ting Ting Li ◽  
Guo Qiang Xu ◽  
Yong Kai Quan

Solar energy utilization has met some complicated problems in recent years, like energy storage, solar thermal power generation dispatchability and grid connection etc. The concept of hybrid solar power systems proposed in early researches has extended the conditions of exploiting solar power generation technology,this paper reviews hybrid solar power system technologies in the past 40 years. According to different complementary energy resources, hybrid solar/renewable energy and solar/conventional energy systems have been discussed in this paper. Particularly, this article presents the thermal and economic performances of Integrated Solar Combined Cycle System (ISCCS).


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Jesús M. Lata ◽  
Manuel Rodríguez ◽  
Mónica Álvarez de Lara

Molten salt technology represents nowadays the most cost-effective technology for electricity generation for stand-alone solar power plants. Although this technology can be applied to both concentrating technologies, parabolic through and central receiver systems (CRSs), CRS technology can take advantages from its higher concentration, allowing to work at higher temperatures and therefore with a reduction in the size and cost of the storage system. The receiver system is the “door” for which the energy passes from the field collector to the thermal-electric cycle; it represents, therefore, the core of the CRS and its performance directly affects plant production. Starting from the published lessons from SOLAR TWO receiver technology, the validation of an improved receiver for molten salt technology was assumed as part of the SOLAR TRES solar thermal power commercial plant development. Main challenges for the new receiver were to increase its allowable peak flux up to 1MW∕m2 in order to maximize the thermal efficiency of the CRS solar power plant, and to improve its safe life without limiting the incident fluxes that the field of heliostats is able to deliver with an optimized pointing strategy. Several advanced features in geometric and thermodynamic aspects and in its material selection have been implemented on the receiver. With the results of a sensitivity analysis carried out with an own code developed by SENER (SENREC), a prototype receiver panel was designed, fabricated, and installed in a proper test bed at the PSA. Test validation on this panel was carried out in 2007. The initial test results show a very good behavior of the prototype receiver, which allows to anticipate that the objectives of its design can be fulfilled. SENER and CIEMAT have joined forces to face up the challenge of sizing and designing a new molten salt receiver of high thermal efficiency, able to operate at high fluxes without compromising its durability (at least 25years). Main challenges for the new receiver design were to optimize the receiver dimensions and receiver tube sizes and material selection to surpass the operating conditions in the new plants with respect to SOLAR TWO.


Author(s):  
Eva Mazegue Pavelková ◽  
Iva Živělová

This paper focuses on state intervention in the pricing of electricity from renewable power sources in the Czech Republic when compared with the pricing in the Slovak Republic, Germany, France and Italy. In these countries the state intervention is implemented in different forms, but the critical part of the price is regulated everywhere by the state. The price of electricity is determined by its production costs, which depend on the source from which electricity is produced. The highest cost of electricity is required to generate renewable energy, particularly solar power, while the lowest costs of power are associated with its production by coal-fired and natural gas-fired thermal power plants. However, hydroelectric power plants attain clearly the lowest cost for generating electricity. State intervention includes supporting power generation from renewable power sources by guaranteeing purchase prices.


Author(s):  
Farshid Zabihian ◽  
Alan S. Fung

In recent years, greenhouse gas (GHG) emissions and their potential effects on the global climate change have been a worldwide concern. Based on International Energy Agency (IEA), power generation contributes half of the increase in global GHG emissions in 2030. In the Middle East, Power generation is expected to make the largest contribution to the growth in carbon-dioxide emissions. The share of the power sector in the region’s total CO2 emissions will increase from 34% in 2003 to 36% in 2030. Therefore, it is very important to reduce GHG emissions in this industry. The purpose of this paper is to examine greenhouse gas emissions reduction potentials in the Iranian electricity generation sector through fuel switching and adoption of advanced power generation systems and to compare these potentials with Canadian electricity generation sector. These two countries are selected because of raw data availability and their unique characteristics in electricity generation sector. To achieve this purpose two different scenarios have been introduced: Scenario #1: Switching existing power stations fuel to natural gas. Scenario #2: Replacing existing power plants by natural gas combined-cycle (NGCC) power stations (The efficiency of NGCC is considered to be 49%). The results shows that the GHG reduction potential for Iranian steam power plants, gas turbines and combined cycle power plants in first scenario are 9.9%, 5.6%, and 2.6%, respectively with the average of 7.6%. For the second scenario the overall reduction of 31.9%, is expected. The average reduction potential for Canadian power plants for scenario number 1 and 2 are 33% and 59%, respectively. As it can be seen, in Canada there are much higher potentials to reduce GHG emissions. The reason is that in Canada majority of power plants use coal as the primary fuel. In fact almost 73% of electricity in thermal power stations is generated by coal. Whereas in Iran almost all power plants (with some exceptions) are dual fuels and 77% of energy consumed in Iran’s thermal power plants come from natural gas. Also, 21% of total electricity generated in Iran is produced by combined-cycle power plants.


2018 ◽  
Vol 3 (7) ◽  
pp. 50
Author(s):  
Anthony Kpegele Le-ol ◽  
Sidum Adumene ◽  
Kenneth Israel

This work presents a comparative analysis of the thermo-economic performance of a simple, retrofitted and built-in combined cycle power plants within the Delta. The data were obtained from a 25MW gas turbine plant-based engine, retrofitted and MATLAB software was used to model the thermodynamic performance of the plants. The economic prediction of the plants was done using a developed net present value(NPV), internal rate of return (IRR), cost of investment (COR) and payback period (PBP).  The economic concept for plants performance was analysed under uncertainty constraints of energy need, operating conditions, energy cost and energy supply variability. Three plants configuration; simple gas turbine (SGT), retrofitted combined cycle (RCC) and Built-in combined cycle (BCC) was analysed based on these economic performance indicators. The three configurations show a positive NPV, PBP and IRR, with the BCC showing the optimum return on investment. Although the RCC show minimum initial cost on investment compare to BCC, the BCC demonstrates greater overall return with an NPV of $30,755,454.18, IRR of 17.1% and PBP of 6.3years for the period of 20years. The analysis shows cash flow of 34.1% and 52.6% for the RCC and BCC respectively. The result also showed that the plant performs better at a lower ambient temperature and higher relative humidity with a higher return on investment. This research provides great insight into the thermo-economic analysis, and benefits of combined cycle power plant and will aid energy system investors on the choice of the power plant for power generation in the Niger Delta.


Author(s):  
Paolo Silva ◽  
Stefano Campanari ◽  
Ennio Macchi

The paper addresses the optimization of the managing strategy of a combined cycle power plant in a liberalized market characterized by great time variability of the electricity sale price. Besides electric tariffs, a variety of other factors affect the selection of the plant operating mode, such as environmental conditions, O&M costs, range of plant output regulation capability, performance deterioration of the components and compressor fouling rate. All calculations refer to a real combined cycle power plant owned by an Italian utility, for which are available detailed performance data, in “new and clean” conditions as well as in real operation. The optimum plant operating schedule is found with reference to three different tariff scenarios: (i) the present Italian situation, characterized by the primary role of oil and gas fired steam power stations, (ii) the Italian situation foreseen after the massive repowering program of existing steam power plants is completed, and (iii) a situation where the base-load electricity is generated by coal-fired power stations. The comparison indicates the utmost importance of the reference tariff scenario on the actual energy ad economic budget of the power station.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 226
Author(s):  
Milana Treshcheva ◽  
Irina Anikina ◽  
Vitaly Sergeev ◽  
Sergey Skulkin ◽  
Dmitry Treshchev

The percentage of heat pumps used in thermal power plants (TPPs) in the fuel and energy balance is extremely low in in most countries. One of the reasons for this is the lack of a systematic approach to selecting and justifying the circuit solutions and equipment capacity. This article aims to develop a new method of calculating the maximum capacity of heat pumps. The method proposed in the article has elements of marginal analysis. It takes into account the limitation of heat pump capacity by break-even operation at electric power market (compensation of fuel expenses, connected with electric power production). In this case, the heat pump’s maximum allowable capacity depends on the electric capacity of TPP, electricity consumption for own needs, specific consumption of conditional fuel for electricity production, a ratio of prices for energy resources, and a conversion factor of heat pump. For TPP based on combined cycle gas turbine (CCGT) CCGT-450 with prices at the Russian energy resources markets at the level of 2019, when operating with the maximum heat load, the allowable heat pump capacity will be about 50 MW, and when operating with the minimum heat load—about 200 MW.


Author(s):  
Nicola Palestra ◽  
Giovanna Barigozzi ◽  
Antonio Perdichizzi

The paper presents the results of an investigation on inlet air cooling systems based on cool thermal storage, applied to combined cycle power plants. Such systems provide a significant increase of electric energy production in the peak hours; the charge of the cool thermal storage is performed instead during the night time. The inlet air cooling system also allows the plant to reduce power output dependence on ambient conditions. A 127MW combined cycle power plant operating in the Italian scenario is the object of this investigation. Two different technologies for cool thermal storage have been considered: ice harvester and stratified chilled water. To evaluate the performance of the combined cycle under different operating conditions, inlet cooling systems have been simulated with an in-house developed computational code. An economical analysis has been then performed. Different plant location sites have been considered, with the purpose to weigh up the influence of climatic conditions. Finally, a parametric analysis has been carried out in order to investigate how a variation of the thermal storage size affects the combined cycle performances and the investment profitability. It was found that both cool thermal storage technologies considered perform similarly in terms of gross extra production of energy. Despite this, the ice harvester shows higher parasitic load due to chillers consumptions. Warmer climates of the plant site resulted in a greater increase in the amount of operational hours than power output augmentation; investment profitability is different as well. Results of parametric analysis showed how important the size of inlet cooling storage may be for economical results.


2021 ◽  
Vol 323 ◽  
pp. 8-13
Author(s):  
Jadambaa Temuujin ◽  
Damdinsuren Munkhtuvshin ◽  
Claus H. Ruescher

With a geological reserve of over 170 billion tons, coal is the most abundant energy source in Mongolia with six operating thermal power stations. Moreover, in Ulaanbaatar city over 210000 families live in the Ger district and use over 800000 tons of coal as a fuel. The three thermal power plants in Ulaanbaatar burn about 5 million tons of coal, resulting in more than 500000 tons of coal combustion by-products per year. Globally, the ashes produced by thermal power plants, boilers, and single ovens pose serious environmental problems. The utilization of various types of waste is one of the factors determining the sustainability of cities. Therefore, the processing of wastes for re-use or disposal is a critical topic in waste management and materials research. According to research, the Mongolian capital city's air and soil quality has reached a disastrous level. The main reasons for air pollution in Ulaanbaatar are reported as being coal-fired stoves of the Ger residential district, thermal power stations, small and medium-sized low-pressure furnaces, and motor vehicles. Previously, coal ashes have been used to prepare advanced materials such as glass-ceramics with the hardness of 6.35 GPa, geopolymer concrete with compressive strength of over 30 MPa and zeolite A with a Cr (III) removal capacity of 35.8 mg/g. Here we discuss our latest results on the utilization of fly ash for preparation of a cement stabilized base layer for paved roads, mechanically activated fly ash for use in concrete production, and coal ash from the Ger district for preparation of an adsorbent. An addition of 20% fly ash to 5-8% cement made from a mixture of road base gave a compressive strength of ~ 4MPa, which exceeds the standard. Using coal ashes from Ger district prepared a new type of adsorbent material capable of removing various organic pollutants from tannery water was developed. This ash also showed weak leaching characteristics in water and acidic environment, which opens up an excellent opportunity to utilize.


Sign in / Sign up

Export Citation Format

Share Document