scholarly journals Acceleration of Image Segmentation Algorithm for (Breast) Mammogram Images Using High-Performance Reconfigurable Dataflow Computers

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ivan L. Milankovic ◽  
Nikola V. Mijailovic ◽  
Nenad D. Filipovic ◽  
Aleksandar S. Peulic

Image segmentation is one of the most common procedures in medical imaging applications. It is also a very important task in breast cancer detection. Breast cancer detection procedure based on mammography can be divided into several stages. The first stage is the extraction of the region of interest from a breast image, followed by the identification of suspicious mass regions, their classification, and comparison with the existing image database. It is often the case that already existing image databases have large sets of data whose processing requires a lot of time, and thus the acceleration of each of the processing stages in breast cancer detection is a very important issue. In this paper, the implementation of the already existing algorithm for region-of-interest based image segmentation for mammogram images on High-Performance Reconfigurable Dataflow Computers (HPRDCs) is proposed. As a dataflow engine (DFE) of such HPRDC, Maxeler’s acceleration card is used. The experiments for examining the acceleration of that algorithm on the Reconfigurable Dataflow Computers (RDCs) are performed with two types of mammogram images with different resolutions. There were, also, several DFE configurations and each of them gave a different acceleration value of algorithm execution. Those acceleration values are presented and experimental results showed good acceleration.

The early detection, diagnosis, prediction, and treatment of breast cancer are challenginghealthcare problems. This study focuses on outlining the traditional and trending techniques used for breast cancer detection, diagnosis, and prediction, including trending noninvasive, nonionizing, and biomarker genetic techniques.In addition, a Computer Aided Detection (CAD) is introduced to classify benign and malignant tumors in mammograms. This CAD system involves three steps. First, the Region of Interest (ROI) that includesthe tumor is identified using a threshold-based method. Second, a deep learning Convolutional Neural Network (CNN) processes the ROI to extract relevant mammogram features. Finally, a Support Vector Machine (SVM) classifier is used to decode two classes of mammogram structures (i.e., Benign (B), and Malignant (M) nodules). The training processes and implementations were carried out using 2800 mammogram images taken from the Curated Breast Imaging Subset of DDSM (CBIS-DDSM). Results have shown that the accuracy of CNN-SVM system achieves 85.1% using AlexNet CNN. Comparison with related work shows the promise of the proposed CAD system


2018 ◽  
Vol 7 (3.12) ◽  
pp. 848
Author(s):  
T Suneetha Rani ◽  
S J Soujanya ◽  
Pole Anjaiah

Recognition of either masses or tissues in a mammogram digital images is a key issue for radiologist. Present methods uses medial filter and morphological operations for detection of suspected cases in a mammogram. They use region of interest (ROI) segmentation for extraction of masses and classification of levels of severities.  Classification of large number of mammogram images based on breast cancer cases takes longer computation time for performing of ROI segmentation.  This is addressed by multi-ROI segmentation and it retrieves the textual properties of large mammogram images for effectively determining the breast cancer mammogram images.Experimental results shows the better performance of proposed method than existing ROI based texture feature extraction.


Author(s):  
Pavithra Suchindran ◽  
Vanithamani R. ◽  
Judith Justin

Breast cancer is the second most prevalent type of cancer among women. Breast ultrasound (BUS) imaging is one of the most frequently used diagnostic tools to detect and classify abnormalities in the breast. To improve the diagnostic accuracy, computer-aided diagnosis (CAD) system is helpful for breast cancer detection and classification. Normally, a CAD system consists of four stages: pre-processing, segmentation, feature extraction, and classification. In this chapter, the pre-processing step includes speckle noise removal using speckle reducing anisotropic diffusion (SRAD) filter. The goal of segmentation is to locate the region of interest (ROI) and active contour-based segmentation and fuzzy C means segmentation (FCM) are used in this work. The texture features are extracted and fed to a classifier to categorize the images as normal, benign, and malignant. In this work, three classifiers, namely k-nearest neighbors (KNN) algorithm, decision tree algorithm, and random forest classifier, are used and the performance is compared based on the accuracy of classification.


Sign in / Sign up

Export Citation Format

Share Document