scholarly journals A novel and facile method for silica nanoparticles synthesis from high temperature vulcanization (HTV) silicon

10.30544/134 ◽  
2016 ◽  
Vol 22 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Mohammad Senemar ◽  
Ali Maleki ◽  
Behzad Niroumand ◽  
Alireza Allafchian

This study is introducing a facile and novel method for synthesis of amorphous silica nanoparticles. Silica nanoparticles were synthesized by pyrolysis and combustion of high temperature vulcanization (HTV) silicone at 700 oC for 1 h. The products were investigated employing transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS), X-ray diffraction (XRD), Brunauer Emmett and Teller (BET) test and Fourier Transform Infrared (FTIR) Spectroscopy. The results indicated that the method is capable of synthesis of amorphous silica nanoparticles with sizes of mostly between 10 and 50 nm.

2022 ◽  
Author(s):  
Guangyao Wang ◽  
Xiqian Wang ◽  
Yuan Zhao

Abstract An oil-soluble molybdenum catalyst was synthesized by a simple and novel method and studied for hydrogenation in coal-oil co-processing. The catalyst was characterized by infrared spectrum (IR), thermogravimetry (TG), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The morphology and crystal structure of catalyst was characterized with scanning electron microscope (SEM) and high resolution transmission electron microscopy (HRTEM). The catalyst can be considered as a precursor that can be converted into active MoS2 components through thermal decomposition and sulfidation. The hydrogenation experiment was carried out by the model reactants of tetradecane and 2-methylnaphthalene with a change of reaction (405℃-445℃) temperature and concentrations of molybdenum catalyst (Mo conc. 0.6-10 mg/g), and results showed that the delightly hydrogenation function of catalyst is to improve the saturation of aromatic ring. The most abundant stacking numbers of decomposed catalyst were 2 and 3, accounting for 53% of all catalyst microcrystalline units. The rapid hydrogenation stage and the significant decrease of feed heavy fraction in co-processing experiment provided the evidence that the hydrogenation performance of the synthesized catalyst is remarkable in coal-oil co-processing.


2013 ◽  
Vol 664 ◽  
pp. 449-453 ◽  
Author(s):  
Sutham Niyomwas

The Si-SiC nanocomposites have been synthesized by self-propagating high temperature synthesis (SHS) from natural precursors. The effects of difference amount of added NaCl from 0 to 0.75 moles to the reactants on the Si-SiC conversion and particle size were investigated. The reaction were carried out in a SHS reactor under static argon gas at the pressure of 0.5 MPa. The nanocomposite results have been characterized by scanning electron microscope, Transmission Electron Microscopy and X-ray diffraction. The results showed that the production of nano-composite materials using SHS process is feasible and agree well with the thermodynamics calculations.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


2002 ◽  
Vol 716 ◽  
Author(s):  
Seok Woo Hong ◽  
Yong Sun Lee ◽  
Ki-Chul Park ◽  
Jong-Wan Park

AbstractThe effect of microstructure of dc magnetron sputtered TiN and TaN diffusion barriers on the palladium activation for autocatalytic electroless copper deposition has been investigated by using X-ray diffraction, sheet resistance measurement, field emission scanning electron microscopy (FE-SEM) and plan view transmission electron microscopy (TEM). The density of palladium nuclei on TaN diffusion barrier increases as the grain size of TaN films decreases, which was caused by increasing nitrogen content in TaN films. Plan view TEM results of TiN and TaN diffusiton barriers showed that palladium nuclei formed mainly on the grain boundaries of the diffusion barriers.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2021 ◽  
Vol 19 (11) ◽  
pp. 66-71
Author(s):  
Maithm A. Obaid ◽  
Suha A Fadaam ◽  
Osama S. Hashim

The aim of this study is to prepare gold nanoparticles by a simple chemical method at a temperature of 70°C. The solution was dried on glass basest by Casting method, the rate of five drops per sample At a temperature 100 C. Then the structural and optical properties have been confirmed by X-ray diffraction, scanning electron microscopy (SEM) and Transmission Electron microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and spectrum.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1979 ◽  
Author(s):  
Jing Zhang ◽  
Shibo Li ◽  
Shujun Hu ◽  
Yang Zhou

Ti3C2Tx MXene, a new 2D nanosheet material, is expected to be an attractive reinforcement of metal matrix composites because its surfaces are terminated with Ti and/or functional groups of –OH, –O, and –F which improve its wettability with metals. Thus, new Ti3C2Tx/Al composites with strong interfaces and novel properties are desired. To prepare such composites, the chemical stability of Ti3C2Tx with Al at high temperatures should be investigated. This work first reports on the chemical stability of Ti3C2Tx MXene with Al in the temperature range 500–700 °C. Ti3C2Tx is thermally stable with Al at temperatures below 700 °C, but it reacts with Al to form Al3Ti and TiC at temperatures above 700 °C. The chemical stability and microstructure of the Ti3C2Tx/Al samples were investigated by differential scanning calorimeter, X-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy.


2011 ◽  
Vol 412 ◽  
pp. 5-8 ◽  
Author(s):  
Ying Zhang ◽  
Ai Chen ◽  
Hai Rong Wang ◽  
Ze Song Li ◽  
Ying Ping Shen

The present article reports the results of studies related to the synthesis of nanocrystalline ceria powder by combustion process using salt combustion aid. Cerium nitrate as oxidant and urea as fuel were used as reagents, Sodium Chloride was compared as combustion aid. The phase analysis and particle size were compared. The product was characterized by X-ray diffraction, Scanning electron microscopy and Transmission electron microscopy. The results showed that employment of starting fuel with combustion aid resulted in synthesizing nanocrystalline ceria powder with fine agglomerates. By using combustion aid, the energetics of the combustion reaction and particle characteristics have been changed.


2022 ◽  
Vol 12 (2) ◽  
pp. 809
Author(s):  
Maxim Rudmin ◽  
Santanu Banerjee ◽  
Boris Makarov ◽  
Kanipa Ibraeva ◽  
Alexander Konstantinov

This research presents the mechanical creation of smart fertilizers from a mixture of smectite and urea in a 3:2 ratio by using the planetary milling technique. The smectite–urea composites show intercalation between urea and mineral, which increases steadily with increasing activation time. A shift of X-Ray Diffraction basal reflections, intensities of Fourier transform infrared spectroscopy (FTIR) peaks, and weight losses in thermogravimetric analysis (TG) document the systematic crystallo-chemical changes of the composites related to nitrogen interaction with activation. Observations of the nanocomposites by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) corroborate the inference. Nitrogen intercalates with smectite in the interlayer space and remains absorbed either within micro-aggregates or on the surface of activated smectites. Soil leaching tests reveal a slower rate of nitrogen than that of traditional urea fertilizers. Different forms of nitrogen within the composites cause their differential release rates to the soil. The formulated nanocomposite fertilizer enhances the quality and quantity of oat yield.


Sign in / Sign up

Export Citation Format

Share Document