scholarly journals Density functional prediction of the structural, elastic, electronic, and thermodynamic properties of the cubic and hexagonal (c, h)-Fe2Hf

Author(s):  
M Hemici ◽  
T Chihi ◽  
M A Ghebouli ◽  
FATMI Messaoud ◽  
B Ghebouli ◽  
...  

Using density functional theory (DFT), the structural, elastic, electronic, and thermodynamic properties of Fe2Hf in the cubic and hexagonal solid phases with Fd-3m and P63/mmc are reported with generalized gradient approximations (GGA). To achieve energy convergence, we report the k-point mesh density and plane-wave energy cut-offs. The calculated equilibrium parameters are in good agreement with the available theoretical data. A complete elastic tensor and crystal anisotropies of the ultra-incompressible Fe2Hf are determined in the wide pressure range. Finally, by using the quasi-harmonic Debye Model, the isothermal and adiabatic bulk modulus and heat capacity of Fe2Hf are also successfully obtained in the present work. By the elastic stability criteria, it is predicted that Fd-3m and P63/mmc structures of Fe2Hf are stable in the pressure range studied, respectively.

2017 ◽  
Vol 28 (07) ◽  
pp. 1750098
Author(s):  
Leini Wang ◽  
Zhang Jian ◽  
Wei Ning

The phonon, elastic and thermodynamic properties of L12 phase Rh3Zr have been investigated by density functional theory approach combining with quasi-harmonic approximation model. The relaxed lattice parameters of L12 phase Rh3Zr at zero pressure are in good agreement with the experiment. To judge the stability of L12 phase Rh3Zr under high pressure, the phonon band structure has been studied. The results show that L12 phase Rh3Zr possesses dynamical stability in the pressure range from 0[Formula: see text]GPa to 80[Formula: see text]GPa due to the absence of imaginary frequencies. The pressure dependences of elastic constants [Formula: see text] have been analyzed. All the elastic constants of Rh3Zr in a wide pressure range (0–80[Formula: see text]GPa) meet general mechanical conditions, suggesting that L12 phase Rh3Zr is mechanically stable under pressure up to 80[Formula: see text]GPa. L12 phase Rh3Zr exhibits ductility under high pressure and the pressure can improve the ductility from the results of the value of [Formula: see text] and Poisson’s ratio [Formula: see text]. Hence, it is obvious that the mechanical properties of Rh3Zr can be improved under high pressure. Moreover, we have obtained the thermodynamic properties using the quasi-harmonic Debye model. We note that the effect of the temperature on the Debye temperature [Formula: see text] is smaller than that of the pressure. We believe that our result will be a good guidance to future works and applications.


2016 ◽  
Vol 30 (35) ◽  
pp. 1650414 ◽  
Author(s):  
Mingliang Wang ◽  
Zhe Chen ◽  
Dong Chen ◽  
Cunjuan Xia ◽  
Yi Wu

The structural, elastic and thermodynamic properties of the A15 structure V3Ir, V3Pt and V3Au were studied using first-principles calculations based on the density functional theory (DFT) within generalized gradient approximation (GGA) and local density approximation (LDA) methods. The results have shown that both GGA and LDA methods can process the structural optimization in good agreement with the available experimental parameters in the compounds. Furthermore, the elastic properties and Debye temperatures estimated by LDA method are typically larger than the GGA methods. However, the GGA methods can make better prediction with the experimental values of Debye temperature in V3Ir, V3Pt and V3Au, signifying the precision of the calculating work. Based on the E–V data derived from the GGA method, the variations of the Debye temperature, coefficient of thermal expansion and heat capacity under pressure ranging from 0 GPa to 50 GPa and at temperature ranging from 0 K to 1500 K were obtained and analyzed for all compounds using the quasi-harmonic Debye model.


2015 ◽  
Vol 33 (4) ◽  
pp. 699-708 ◽  
Author(s):  
Mokhtar Berrahal ◽  
Mohammed Ameri ◽  
Y. Al-Douri ◽  
U. Hashim ◽  
Dinesh Varshney ◽  
...  

AbstractThe paper presents an investigation on crystalline, elastic and electronic structure in addition to the thermodynamic properties for a CeRu4P12 filled skutterudite device by using the full-potential linear muffin-tin orbital (FP-LMTO) method within the generalized gradient approximations (GGA) in the frame of density functional theory (DFT). For this purpose, the structural properties, such as the equilibrium lattice parameter, bulk modulus and pressure derivatives of the bulk modulus, were computed. By using the total energy variation as a function of strain we have determined the independent elastic constants and their pressure dependence. Additionally, the effect of pressure P and temperature T on the lattice parameters, bulk modulus, thermal expansion coefficient, Debye temperature and the heat capacity for CeRu4P12 compound were investigated taking into consideration the quasi-harmonic Debye model.


2016 ◽  
Vol 94 (9) ◽  
pp. 865-876 ◽  
Author(s):  
Dj Guendouz ◽  
Z. Charifi ◽  
H. Baaziz ◽  
T. Ghellab ◽  
N. Arikan ◽  
...  

Electronic band structure, optical and thermodynamic properties of ternary hydrides MBeH3 (M = Li, Na, and K) were studied using ab initio density functional theory (DFT). The effect of the adopted approximation to the exchange-correlation functional of the DFT is explicitly investigated by considering four different expressions of two different classes (local-density approximation and generalized-gradient approximation). The calculated magnitude of B classifies MBeH3 (M = Li, Na, and K) as easily compressible materials. The bonding interaction in these compounds is quite complicated. The interaction between M and BeH6 is ionic and that between Be and H comprises both ionic and covalent characters. The electronic structure of the complex hydride was investigated by calculating the partial and total densities of states, and electron charge density distribution. Large gaps in the density of states appear at the Fermi energy of LiBeH3, NaBeH3, and KBeH3 indicating that these classes of hydrides are insulators. Optical properties, including the dielectric function, reflectivity, and absorption coefficient, each as a function of photon energy, are calculated and show an optical anisotropy for LiBeH3 and KBeH3. Through the quasi-harmonic Debye model, in which the phononic effects are considered, temperature dependence of volume V(T), bulk modulus B(T), and thermal expansion coefficient α(T), constant-volume and constant-pressure specific heat (Cv and Cp) and Debye temperature ΘD, the entropy S, and the Grüneisen parameter γ were calculated at wide pressure and temperature ranges. The principal aspect of the obtained results is the close similarity of MBeH3 (M = Li, Na, and K) compounds.


Author(s):  
Bo Li ◽  
Weiyi Ren

The phase transition of zinc sulfide (ZnS) from Zinc-blende (ZB) to a rocksalt (RS) structure and the elastic, thermodynamic properties of the two structures under high temperature and pressure are investigated by first-principles study based on the pseudo-potential plane-wave density functional theory (DFT) combined with the quasi-harmonic Debye model. The lattice constant [Formula: see text], bulk modulus [Formula: see text] and the pressure derivative of bulk modulus [Formula: see text]’ of the two structures are calculated. The results are in good agreement with experimental results and the other theoretical data. From the energy–volume curve, enthalpy equal principle and mechanical stability criterion, the transition pressures from the ZB to the RS structure are 16.83, 16.96 and 16.61 GPa, respectively. The three results and the experimental values 14.7–18.1, 16 GPa are very close to each other. Then the elastic properties are also calculated under the pressure ranging from 0 to 30 GPa. Finally, through the quasi-harmonic Debye model, the thermodynamic properties dependence of temperature and pressure in the ranges between 0–1600 K and 0–30 GPa are obtained successfully.


2019 ◽  
Vol 33 (06) ◽  
pp. 1950030 ◽  
Author(s):  
Xiao-Xia Pu ◽  
Xiao-Jiang Long ◽  
Lin Zhang ◽  
Jun Zhu

In this work, the structure, elastic and thermodynamic properties of Ti2GaC at high pressure (P) and high-temperature (T) are studied based on the density functional first-principles. The lattice parameters and elastic constants are well consistent with some theoretical data and experimental results. The elastic constant of Ti2GaC increase monotonously with the increase of pressure (P), which demonstrates the mechanical stability of Ti2GaC at the pressure (P) from 0 to 200 GPa. Mechanical properties including Poisson’s ratio ([Formula: see text]), Young’s modulus (E), shear modulus (G) and bulk modulus (B), which are obtained from elastic constants C[Formula: see text]. The ratio B/G value shows that Ti2GaC is a brittle material, but its enhancing ductility significantly with the elevate of pressure (P). The Grüneisen parameters ([Formula: see text]), thermal expansion coefficient ([Formula: see text]), heat capacity (C[Formula: see text]), elastic constant (C[Formula: see text]), bulk modulus (B), energy (E) and volume (V) with the change of temperature (T) or pressure (P) are calculated within the quasi-harmonic Debye model for pressure (P) and temperatures (T) range in 1600 K and 100 GPa. Besides, densities of states and energy band are also obtained and analyzed in comparison with available theoretical data.


Open Physics ◽  
2014 ◽  
Vol 12 (1) ◽  
Author(s):  
Samia Lamraoui ◽  
Rachid Bensalem ◽  
Khadidja Hacini ◽  
Hocine Meradji ◽  
Sebti Ghemid ◽  
...  

AbstractStructural, electronic and thermal properties of Zn1−x MgxS ternary alloys are studied by using the full potential-linearized augmented plane wave method (FP-LAPW) within the density functional theory (DFT). The Wu-Cohen generalized gradient approximation (WC-GGA) is used in this approach for the exchangecorrelation potential. Moreover, the modified Becke-Johnson approximation (mBJ) is adopted for band structure calculations. The dependence of the lattice constant, bulk modulus and band gap on the composition x showed that the first exhibits a small deviation from the Vegard’s law, whereas, a marginal deviation of the second from linear concentration dependence (LCD). The bowing of the fundamental gap versus composition predicted by our calculations agrees well with the available theoretical data. The microscopic origins of the gap bowing are explained by using the approach of Zunger and co-workers. Thermal effects on some macroscopic properties of Zn1−x MgxS alloys are also investigated using the quasi-harmonic Debye model, in which the phononic effects are considered. As, this is the first quantitative theoretical prediction of the thermal properties of Zn1−x MgxS alloys, no other calculated results and furthermore no experimental studies are available for comparison.


2015 ◽  
Vol 29 (31) ◽  
pp. 1550229 ◽  
Author(s):  
M. Khalfa ◽  
H. Khachai ◽  
F. Chiker ◽  
N. Baki ◽  
K. Bougherara ◽  
...  

The electronic structure, mechanical and thermodynamic properties of Fe2VX, (with X = Al and Ga), have been studied self consistently by employing state-of-the-art full-potential linearized approach of augmented plane wave plus local orbitals (FP-LAPW + lo) method. The exchange-correlation potential is treated with the local density and generalized gradient approximations (LDA and GGA). Our predicted ground state properties such as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA, and these results are in very good agreement with the available experimental and theoretical data. Further, thermodynamic properties of Fe2VAl and Fe2VGa are predicted with pressure and temperature in the ranges of 0–40 GPa and 0–1500 K using the quasi-harmonic Debye model. We have obtained successfully the variations of the heat capacities, primitive cell volume and volume expansion coefficient.


2011 ◽  
Vol 268-270 ◽  
pp. 275-279
Author(s):  
Hai Yan Wang ◽  
Dong Xia Xu ◽  
Jin Bang Yu ◽  
Xu Sheng Li ◽  
Qian Ku Hu

The thermodynamic properties of AlNi are investigated by the full-potential linearized muffin-tin orbital (FP-LMTO) scheme within the generalized gradient approximation correction (GGA) in the frame of density functional theory. The calculated lattice parameter and bulk modulus are in excellent agreement with the experimental and other calculated results. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of relative volumeV/V0on pressureP, cell volumeVon temperatureT, linear thermal expansion α and specific heatCVon temperature and pressure are successfully obtained.


2013 ◽  
Vol 27 (14) ◽  
pp. 1350040 ◽  
Author(s):  
CUI-MING TANG ◽  
XIAO-XU CHEN ◽  
JUN WANG ◽  
YAN-FEI HU ◽  
HONG-YAN WANG

In the frame of density functional theory, first-principles calculations have been carried out to investigate the structures, elastic constants, structural phase transition between B1 and B2 phases and thermodynamic properties of the zirconium nitride ( ZrN ) by means of the generalized gradient approximation. The equilibrium lattice parameter we obtained for ZrN in B1 phase is closer to the experiment results than previous theoretical results. In addition, the calculations of the elastic constants show that ZrN is a brittle material. What is more, based on third-order natural strain equation of state, the phase transition pressure 338 GPa for ZrN is predicted for B1–B2 transition. According to the quasi-harmonic Debye model, the thermodynamic parameters of ZrN have been investigated systematically.


Sign in / Sign up

Export Citation Format

Share Document