scholarly journals Investigation of Wooden Beam Behaviors Reinforced with Fiber Reinforced Polymers

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Şemsettin KILINÇARSLAN ◽  
Yasemin ŞİMŞEK TÜRKER

Wood material can be demolished over time due to different environmental factors. Structural elements may need to be strengthened over time as a result of possible natural disasters or during use. Beams are elements under load in the direction perpendicular to their axes. Therefore, they are basically under the effect of bending. When the studies on the behavior of beams against bending test are examined, it is known that the bottom surface of the material generally breaks. For this reason, fiber reinforced polymers (FRP) materials have been used in recent years to reinforce beam members. It is a scientific fact that it is necessary to prefer FRPs for the solution of this problem, as well as their properties such as lightness, corrosion and flexibility, their application without disrupting the appearance of wood.In this study, it was aimed to investigate the effect of reinforcing wooden beams with fiber reinforced polymer materials with different properties on different bending behaviors such as load bearing capacity, ductility, modulus of elasticity. It was observed that the ductility and bearing capacity of wooden beams reinforced with fiber reinforced polymer materials increased significantly compared to non-reinforced beams.

2018 ◽  
Vol 52 (23) ◽  
pp. 3173-3181 ◽  
Author(s):  
Kuldeep Agarwal ◽  
Suresh K Kuchipudi ◽  
Benoit Girard ◽  
Matthew Houser

Fiber reinforced polymer composites have been around for many decades but recently their use has started to increase in multiple industries such as automotive, aerospace, and construction. The conventional composite manufacturing processes such as wet lay-up, resin transfer molding, automatic lay ups etc. suffer from a lot of practical and material issues which have limited their use. The mechanical properties of the parts produced by such processes also suffer from variation that causes problems downstream. Composites based additive manufacturing processes such as Fused Deposition Modeling and Composite Filament Fabrication are trying to remove some of the barriers to the use of composites. Additive manufacturing processes offer more design and material freedom than conventional composite manufacturing processes. This paper compares conventional composite processes for the manufacturing of Epoxy-Fiberglass fiber reinforced polymers with composite filament fabrication based Nylon-Fiberglass fiber reinforced polymers. Mechanical properties such as tensile strength, elastic modulus, and fatigue life are compared for the different processes. The effect of process parameters on these mechanical properties for the composite filament fabrication based process is also examined in this work. It is found that the composite filament fabrication based process is very versatile and the parts manufactured by this process can be used in various applications.


2011 ◽  
Vol 255-260 ◽  
pp. 3124-3128
Author(s):  
Jian Hui Li ◽  
Ying Li ◽  
Zong Cai Deng

Corroded RC columns do not possess necessary ductility to dissipate seismic energy during a major earthquake, the study investigates the use of hybrid fiber reinforced polymer (FRP) wrapping as a method of retrofitting non-ductile corroded RC columns, and a model to determine the envelope response of RC corroded columns strengthened with hybrid FRP are presented based on cross-section analysis for undamaged RC element. The results show that the technique of strengthening corroded RC column with hybrid FRP is quite effective, the envelope curve estimated using the linear plane assumption with modification by reinforcement slip model, may still be used as the envelope curve of RC corroded columns strengthened with hybrid FRP, a good agreement between analytical and experimental results is observed.


2020 ◽  
Vol 23 (8) ◽  
pp. 1534-1547 ◽  
Author(s):  
Jingting Huang ◽  
Tao Li ◽  
Dayong Zhu ◽  
Peng Gao ◽  
An Zhou

This article studies the compressive behavior of concrete columns confined by different basalt fiber–reinforced polymers. A total of 30 columns were divided into 10 groups according to section shapes (circular and square), basalt fiber–reinforced polymer types (unidirectional basalt fiber–reinforced polymer, bidirectional basalt fiber–reinforced polymer, and hybrid basalt fiber–reinforced polymer/carbon fiber–reinforced polymers), and number of layers (0, 1, and 2). The test results showed that the compressive strengths of confined specimens increased by 20%–71% for circular columns and by 23%–41% for square columns. Similarly, the ultimate strains improved by 49%–296% for circular specimens and by 45%–145% for square specimens. The two-layer basalt fiber–reinforced polymer jacket had the best confinement effect, whereas the confining effect of bidirectional basalt fiber–reinforced polymer wrapping was relatively lower than that of unidirectional basalt fiber–reinforced polymer wrapping. Moreover, both the strength and ultimate strain of confined concrete improved with increasing number of basalt fiber–reinforced polymer layers. Finite element numerical models were also developed and verified by experimental results, and then the stress distributions of basalt fiber–reinforced polymer jackets and cross-sectional concrete were presented. Based on the test results and experimental data from several existing studies, modified strength and ultimate strain models were further developed for basalt fiber–reinforced polymer-confined circular and square columns.


2011 ◽  
Vol 243-249 ◽  
pp. 5618-5623
Author(s):  
Jian Hui Li ◽  
Ying Li ◽  
Zong Cai Deng

The research program is aimed at investigating the effectiveness of application of good ductile hybrid fiber reinforced polymer (FRP) to upgrade corroded RC beams. A total of 5 RC beams are tested under flexural load, the results show that compared with the un-strengthened corroded RC beam, the crack, yield, maximum and ultimate load of corroded RC beam strengthened with hybrid FRP sheets is increased by 14%, 35%, 102% and 109% respectively, and the displacement ductility factor is only decreased by 11%, which indicate that the hybrid FRP sheets can improve significantly the flexural performance of corroded RC beam.


2015 ◽  
Vol 766-767 ◽  
pp. 133-139 ◽  
Author(s):  
Jeswin Arputhabalan ◽  
K. Palanikumar

This paper deals with tensile properties of natural fiber reinforced polymer composites. Natural fibers have recently found increasing use in various fields as an alternative to synthetic fiber reinforced polymers. Due to this they have become attractive to engineers, researchers and scientists. Natural fibers are replacing conventional fibers such as glass, aramid and carbon due to their eco-friendly nature, lesser cost, good mechanical properties, better specific strength, bio-degradability and non-abrasive characteristics. The adhesion between the fibers and the matrix highly influence the tensile properties of both thermoset and thermoplastic natural fiber reinforced polymer composites. In order to enhance the tensile properties by improving the strength of fiber and matrix bond many chemical modifications are normally employed. In most cases the tensile strengths of natural fiber reinforced polymer composites are found to increase with higher fiber content, up to a maximum level and then drop, whereas the Young’s modulus continuously increases with increasing fiber loading. It has been experimentally found that tensile strength and Young’s modulus of reinforced composites increased with increase in fiber content [1].


2018 ◽  
Vol 29 (12) ◽  
pp. 2557-2569
Author(s):  
Kunal Joshi ◽  
Marquese Pollard ◽  
Andrea Chiari ◽  
Tarik Dickens

External bonding with fiber-reinforced polymers is currently one of the most popular technologies for rehabilitation of concrete structures. However, the effectiveness of the technology largely depends on the strength of the bond between the fiber-reinforced polymer laminate and the concrete substrate. This article provides a system to monitor the loss of bond between the fiber-reinforced polymer laminate and the concrete. Fiber optic sensors are broadly accepted as a structural health monitoring device for fiber-reinforced polymer materials by integrating the sensors into the host material. A recent development in fiber optic sensor technology is the mechanoluminescence-based optoelectronic sensors. Concrete beams strengthened with multifunctional fiber-reinforced polymer laminates were tested in shear using these sensors to evaluate the bond strength of the composite system. The sensors showed response to shear stress transfer in the adhesive layer which was observed to be as low as 2 MPa. The inclusion of sensors does not affect the bond strength (3.35 MPa), for both beams with sensors and without sensors. Real-time failure detection of fiber-reinforced polymer–strengthened beams was successfully achieved in this study. In future, the scheme aims at providing a tool to reduce the response time and decision making involved in the maintenance of deficient structures.


2019 ◽  
Vol 299 ◽  
pp. 06005 ◽  
Author(s):  
Paul Bere ◽  
Emilia Sabău ◽  
Cristian Dudescu ◽  
Calin Neamtu ◽  
Marius Fărtan

The fiber reinforced polymers (FRP) represent a group of materials with a very impressive development in the last time. There are used in different applications from aerospace to sports or medicine. Carbon fiber reinforced polymer (CFRP) has special properties and tend to replace traditional materials like steel, aluminum alloys or wood. Different procedures were developed to manufacture the CFRP. Autoclave processing can be considered the most important way to obtain the best mechanical properties of this kind of material. In this paper it is presented the autoclave manufacturing process to obtain theCFRP plates. The autoclave polymerization process steps are indicated for the CFRP made of Twill textile prepreg material. The stacking sequence of the layers is [0/90]. To determine the mechanical properties of the material tensile test on standardized specimens was employed. The obtained mechanical material’s properties are comparable with steel but its density was reduced 5.5 times.


2019 ◽  
Vol 53 (24) ◽  
pp. 3469-3481
Author(s):  
Hong Yu ◽  
Suresh Advani ◽  
Dirk Heider

Increasing applications of carbon fiber reinforced polymers exploiting its electrical properties demand a good understanding of the electrical conduction mechanisms of carbon fiber reinforced polymer. Resin-rich interface, which is not uncommon to exist between composite laminae, not only affect the mechanical properties, but also the electrical conduction behavior. This study focuses on the impact of resin-rich layer on the through-thickness resistivity of carbon fiber reinforced polymer. Electrical characterizations are carried out on dry fiber tow systems as well as cured composites. Through-thickness resistivity changes of dry fibers with the sizing are compared against fibers without the sizing layer, and cured composites with added resin-rich layer against the composite laminates without the resin-rich layer. A localized Joule heating theory is proposed to explain the difference in the electrical responses. The theoretical and experimental investigations should prove useful for the development of quantitative models with Joule heating to describe electrical resistivity behavior of carbon fiber reinforced polymer.


Author(s):  
Mulugeta H Woldemariam ◽  
Giovanni Belingardi ◽  
Alem T Beyene ◽  
Daniel T Reda ◽  
Ermias G Koricho

In this work the effect of nanoclay, Cloisite 20B inclusion on the mechanical behavior of a woven-type glass fiber reinforced polymer composite was experimentally investigated. Specifically, the study examined the effect of nanoclay with various weight percentages on the tensile, compressive strengths, and modulus of elasticity of glass fiber reinforced polymers in both weft and warp directions. Results showed that depending on the warp and weft directions, the inclusion of nanoclay, Cloisite 20B, significantly improved the mechanical behavior of glass fiber reinforced polymers. A better understanding of nanoclay fillers and their contribution to mechanical behaviors can lead to better design of novel structural composites.


2020 ◽  
Vol 23 (15) ◽  
pp. 3195-3207
Author(s):  
WenXiao Li ◽  
Yongxin Yang

The performance degradation of fiber-reinforced polymer is often assessed based on the ultimate strength obtained during a destructive test. This method has the advantages of simple operation, clear internal mechanism, and noticeable data variation. However, because fiber-reinforced polymers are composed of high molecular compounds, their properties are influenced by several factors, such as the manufacturing process and composition ratio. Without a unified benchmark, it is difficult to unify destructive test data obtained by different researchers and organizations. In this study, a new test method named SNFT (Same Non-failure FRP Test) is proposed for assessing the durability of fiber-reinforced polymers. SNFT is a testing method in which the same specimen can be repeatedly tested at different aging periods. The rationality of the SNFT method is analyzed using the displacement compatibility between the degraded zone and the undegraded zone. The conversion principle based on the degraded degree between the destructive test and the SNFT method is deduced by calculation. An experimental test was designed to investigate the test conditions and control parameters of the SNFT method. SNFT and synchronous destructive tests on glass fiber–reinforced plastic were carried out under the conditions of wet heat and alkali solution, and the theoretical results were compared and verified with data in the literature. The results show that compared with the traditional durability destructive test method, the SNFT method shows more consistent data and less data fluctuation and incurs a lower test cost. The elastic modulus, adopted as the durability benchmark, can be similar to the test results of traditional destructive test methods and could be transformed based on the transformation relationship proposed in this article. The degradation of fiber-reinforced polymer in different environments is characterized by the variation in elastic modulus measured using the SNFT method. This study provides a theoretical basis for establishing a unified benchmark of durability tests and data and supports the quantitative design of durability.


Sign in / Sign up

Export Citation Format

Share Document