scholarly journals Physicochemical and microbiological evaluation of surface water quality of aquaculture ponds Located in Savar, Dhaka, Bangladesh

2021 ◽  
Vol 9 (2) ◽  
pp. 138-146
Author(s):  
Sharmin Sultana ◽  
Amisha Chowdhury ◽  
Tahmina Sultana ◽  
Khorshed Alam ◽  
Ruhul A Khan

Aquaculture is one of the most vital sectors in Bangladesh as it exhibits a major role in nutrition, livelihoods and foreign exchange incomes/earnings every year. However, due to chemical impurities, infectious diseases caused by microorganisms, heavy metal accumulation, and aquaculture in Bangladesh is gradually declining and posing serious health risks. In Savar, which is one of the major industrial zones in Bangladesh, all industrial sewage and wastes severely deteriorate the water quality of the ponds, rivers, lakes and various waterways that are involved in aquaculture/fish culture. Hence, to determine the water quality by assessing different physicochemical and microbiological parameters, water samples were collected from five selected ponds located in Atomic Energy Research Establishment premises, Savar, Dhaka and analyzed according to the standard procedures. The obtained values of temperature, pH, Salinity, TDS, TA, EC, TH, Chloride content, Free CO2, DO, Nitrate and Sulfate were compared with the recommended values of Bangladesh and WHO standard for suitable water quality. Most of the physicochemical parameters exceeded the Standard value. Total Viable Count, Total Coliform and Fecal Coliform Count were also found to be higher than the standard value of WHO indicating fecal contamination of the pond water. Some fish pathogens were also isolated from the ponds. Water quality index (WQI) was calculated for five sampling sites to determine the level of pollution. It was observed that the water quality of the all the ponds reached to critical point of pollution. It is therefore, a high time to take initiatives to save the ponds that are involved in aquaculture from further pollution. The results revealed that the pond waters of five different sites were excessively polluted and unsuitable for fish culture.

2020 ◽  
Vol 6 (1) ◽  
pp. 44-55
Author(s):  
Md Imdadul Hoque ◽  
Md Aktarul Islam ◽  
Md Niaz Morshed

A study was conducted to assess of groundwater and surface water quality of Barisal sadar upazila. Total 22 water samples (11 pond water and 11 groundwater) were collected from January to March, 2017. Samples were slightly acidic in nature and 7 pond water not suitable for aquaculture in respect of pH. Samples of pond were “excellent” and groundwater samples were “good” for irrigation except two high salinity group water for irrigation for EC. Calcium indicates the samples were suitable for aquaculture but 7 samples were not suitable due to higher Mg content. In respect of K, 9 samples were not suitable for aquaculture. Cu concentrations found suitable for all purposes. For Fe and Zn samples are suitable for irrigation and consumption. Chloride showed, samples were not suitable for livestock consumption except 7 ponds sample. Samples are not suitable for aquaculture in respect of Cl, Fe and Zn. For Manganese, samples (except 1) found suitable for consumption. Samples were “excellent” for sensitive, semi-tolerant and tolerant crops in respect of B. Not any samples responded to CO3 test and HCO3 concentrations found normal. All water sources free from Arsenic contamination. Phosphorus concentration in groundwater might not be harmful for multipurpose use. SAR categorized all samples “excellent” class for irrigation except 2 groundwater samples. 15 samples were “suitable”, 3 were “marginal” and 4 were “unsuitable” for irrigation in respect of RSC. For HT, 13 were “moderately hard” and 09 were “hard” limit for irrigation and samples were suitable for drinking and livestock consumption. Asian J. Med. Biol. Res. March 2020, 6(1): 44-55


2009 ◽  
Vol 12 (2) ◽  
pp. 97-110
Author(s):  
Hanh Thi Hong Tran ◽  
Tran Thi Hong Le ◽  
Hanh Vu Bich Dang ◽  
Thanh Thi Duong

Nowadays, with developing all over country of aquaculture, basa catfish in the Mekong River delta, included An Giang province, has kept important position and contributed to economic development in the area. However, aquaculture activities has faced with environmental risk and aquacultures diseases that cause quality of fish pond water has usually pollution and reducing total of basa fish yeild. The water and sludge samples were conducted for six months in order to carry out the current status of water quality of fish ponds at My Hoa Hung commune at Long Xuyen city. Based on analysis results, proposing establishment dada base and monitoring network of surface water by using GIS that were conducted to improve surface water quality and identify the risks that may cause damage the environmental of basa fish ponds in this reserach.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3418
Author(s):  
Bing Li ◽  
Rui Jia ◽  
Yiran Hou ◽  
Chengfeng Zhang ◽  
Jian Zhu ◽  
...  

In aquaculture, constructed wetland (CW) has recently attracted attention for use in effluent purification due to its low running costs, high efficiency and convenient operation,. However, less data are available regarding the long-term efficiency of farm-scale CW for cleaning effluents from inland freshwater fish farms. This study investigated the effectiveness of CW for the removal of nutrients, organic matter, phytoplankton, heavy metals and microbial contaminants in effluents from a blunt snout bream (Megalobrama amblycephala) farm during 2013–2018. In the study, we built a farm-scale vertical subsurface flow CW which connected with a fish pond, and its performance was evaluated during the later stage of fish farming. The results show that CW improved the water quality of the fish culture substantially. This system was effective in the removal of nutrients, with a removal rate of 21.43–47.19% for total phosphorus (TP), 17.66–53.54% for total nitrogen (TN), 32.85–53.36% for NH4+-N, 33.01–53.28% NH3-N, 30.32–56.01% for NO3−-N and 42.75–63.85% for NO2−-N. Meanwhile, the chlorophyll a (Chla) concentration was significantly reduced when the farming water flowed through the CW, with a 49.69–62.01% reduction during 2013–2018. However, the CW system only had a modest effect on the chemical oxygen demand (COD) in the aquaculture effluents. Furthermore, concentrations of copper (Cu) and lead (Pb) were reduced by 39.85% and 55.91%, respectively. A microbial contaminants test showed that the counts of total coliform (TC) and fecal coliform (FC) were reduced by 55.93% and 48.35%, respectively. In addition, the fish in the CW-connected pond showed better growth performance than those in the control pond. These results indicate that CW can effectively reduce the loads of nutrients, phytoplankton, metals, and microbial contaminants in effluents, and improve the water quality of fish ponds. Therefore, the application of CW in intensive fish culture systems may provide an advantageous alternative for achieving environmental sustainability.


2019 ◽  
Vol 42 (1) ◽  
pp. 67-75 ◽  
Author(s):  
Igor Gopchak ◽  
Tetiana Basiuk ◽  
Ihor Bialyk ◽  
Oleg Pinchuk ◽  
Ievgenii Gerasimov

Abstract The environmental assessment of the surface water quality of the Western Bug River has been made using the system of classification quality of land surface water of Ukraine in accordance with the approved methodology, which allows comparing water quality of separate areas of water objects of different regions. The calculation of the environmental assessment of water quality has been carried according to three blocks: block of salt composition, block of trophic and saprobic (ecological and sanitary) indicators and block of indicators of content of specific toxic substances. The results are presented in the form of a combined environmental assessment, based on the final conclusions of the three blocks and consists in calculating the integral ecological index. Comprehensive studies of changes in the water quality of the Western Bug River have been conducted within the territory of Ukraine for a long-term period. The water quality of the river on the final values of the integral indicators of the ecological condition corresponded mainly to 4nd category of the 3rd class – the water is “satisfactory” by condition and “little polluted” by degree of purity (except for points of observation that located within the Volyn region, where the water quality corresponded to 3rd category and the 2nd class. It is “good” by condition and “fairly clean” by the degree of purity). Visualization and part of the analysis are performed using GIS technologies in the software of the ArcGIS 10.3.


Author(s):  
Hüseyin Güher ◽  
Burak Öterler ◽  
Belgin Elipek ◽  
Okan Yeler ◽  
Gazel Aydin

K?rklareli Reservoir locating in Meri?-Ergene River Basin is an important drinking/using a freshwater resource of K?rklareli Province. In order to ensure the sustainable use of this important reservoir, its current situation should be examined periodically and evaluated by multivariate analyses. For this reason, the water samples were taken between the dates April 2018 and February 2019 at monthly intervals from 3 different stations. The data of environmental and physicochemical variables (water temperature, dissolved oxygen, pH, salinity, conductivity, total dissolved solids, Chlorophyll-a, light permeability, fluoride, chloride, NO2-N, NO3-N, PO4, SO4, and essential/potentially toxic elements) measured and evaluated according to the classes in surface water quality control regulation of Turkey. The parameters exceeding first-class water quality values (chlorophyll-a, pH, NO2-N, chloride, selenium) were mapped in GIS using Spline integration approach. Also, Sodium Absorbtion Ratio, Kelly Index Values, and Magnesium Ratio, were calculated to evaluate the water quality for agricultural irrigation water standards. The water quality of the reservoir was evaluated by using multivariance analyses (Bray-Curtis Similarity Index, Correspondence Analyses, Pearson Correlation Index). As a result, it was emphasized that using GIS approach is a potential useful method of monitoring the sustainable water quality of K?rklareli reservoir which is determined to have an oligomesotrophic character.


2021 ◽  
Author(s):  
Gurusamy Kutralam-Muniasamy ◽  
Fermín Pérez-Guevara ◽  
Ignacio Elizalde Martinez ◽  
Shruti Venkata Chari

Abstract The Santiago River is one of Mexico's most polluted waterways and evaluating its surface water quality during the COVID-19 outbreak is critical to assessing the changes and improvements, if any, from the nationwide lockdown (April-May 2020). Hence, the data for 12 water quality parameters from 13 sampling stations during April-May 2020 (lockdown) were compared with the levels for the same period of 2019 (pre-lockdown) and with the same interval of previous eleven-years (2009-2019). The values of BOD (14%), COD (29%), TSS (7%), f. coli (31%), t. coli (14%) and Pb (20%) declined, while pH, EC, turbidity, total nitrogen and As enhanced by 0.3-21% during the lockdown compared to the pre-lockdown period suggesting decrements of organic load in the river due to the temporary closure of industrial and commercial activities. An eleven-year comparison estimated the reduction of pH, TSS, COD, total nitrogen and Pb by 1-38%. The analysis of water quality index estimates showed short-term improvements of river water quality in the lockdown period, compared to pre-lockdown and eleven-year trend as well as indicated very poor quality of the river. The contamination sources identified by factor analysis were mainly related to untreated domestic sewage, industrial wastewaters and agriculture effluents influencing the river water quality. Overall, our findings demonstrated positive responses of COVID-19 imposed lockdown on water quality of the Santiago River during the study period, providing a foundation for the government policy makers to identify the sources of pollution, to better design environmental policies and plans for water quality improvements.


Sign in / Sign up

Export Citation Format

Share Document