scholarly journals In vivo immunoloprotective potentials of Plantago lanceolata aqueous extract on methotrexate induced albino male mice

2021 ◽  
Vol 3 (2) ◽  
pp. 168-174
Author(s):  
Mohamednoruldin Dh Hazim ◽  
Ruqaya Mohammed Al-Ezzy ◽  
Ghufran Malek Ealan

This study aimed to evaluate the immunological potential of Plantago lanceolata through determination of (total and absolute count of white blood cell, total count of red blood cell and total count of hemoglobin). The results indicated the ability of plant extract to modulate toxic effect of methotrexate on albino mice by enhancing immunity through all tested parameters All this effect due to the presence of chemical active constituents of plant especially (flavonoid and alkaloids).

1977 ◽  
Vol 16 (01) ◽  
pp. 26-29 ◽  
Author(s):  
D. D. Greenberg ◽  
P. Som ◽  
G. E. Meinken ◽  
D. F. Sacker ◽  
H. L. Atkins ◽  
...  

Summary 99mTc-pertechnetate distribution studies were performed in rabbits and mice following pretreatment between 5—336 hours with various routinely used stannous complexes (HSA, MAA, GHT, DTPA, PYPs) containing different amounts of Sn++ (0.17 —15.0 μ mg/kg). Beyond a concentration of 0.26 mg/kg of Sn++ an alteration in 99mTc-pertechnetate distribution was observed. The red blood cell was found to be the most prominent target. An in-vivo reduction of 99mTc-pertechnetate apparently occurred by the presence of stannous ion within the red blood cell. Preloading time period between 5—24 hours did not alter the uptake of RBC/plasma ratio. Beyond that period it decreased slowly and still persisted up to 2 weeks following pretreatment. RBC/ plasma ratio of 99mTcO4 - increased with increased Sn++ content of various commercially available pharmaceutical kits.


Author(s):  
Shannon L. McArdel ◽  
Anne-Sophie Dugast ◽  
Maegan E. Hoover ◽  
Arjun Bollampalli ◽  
Enping Hong ◽  
...  

AbstractRecombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.


1949 ◽  
Vol 7 (2) ◽  
pp. 259
Author(s):  
R.T. Nieset ◽  
Blanche Porter ◽  
W.S. Trautman ◽  
Ralph M. Bell ◽  
William Parson ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0136885 ◽  
Author(s):  
Stéphane Kerbrat ◽  
Benoit Vingert ◽  
Marie-Pierre Junier ◽  
Flavia Castellano ◽  
François Renault-Mihara ◽  
...  

1997 ◽  
Vol 272 (5) ◽  
pp. H2107-H2114 ◽  
Author(s):  
D. C. Poole ◽  
T. I. Musch ◽  
C. A. Kindig

As muscles are stretched, blood flow and oxygen delivery are compromised, and consequently muscle function is impaired. We tested the hypothesis that the structural microvascular sequellae associated with muscle extension in vivo would impair capillary red blood cell hemodynamics. We developed an intravital spinotrapezius preparation that facilitated direct on-line measurement and alteration of sarcomere length simultaneously with determination of capillary geometry and red blood cell flow dynamics. The range of spinotrapezius sarcomere lengths achievable in vivo was 2.17 +/- 0.05 to 3.13 +/- 0.11 microns. Capillary tortuosity decreased systematically with increases of sarcomere length up to 2.6 microns, at which point most capillaries appeared to be highly oriented along the fiber longitudinal axis. Further increases in sarcomere length above this value reduced mean capillary diameter from 5.61 +/- 0.03 microns at 2.4-2.6 microns sarcomere length to 4.12 +/- 0.05 microns at 3.2-3.4 microns sarcomere length. Over the range of physiological sarcomere lengths, bulk blood flow (radioactive microspheres) decreased approximately 40% from 24.3 +/- 7.5 to 14.5 +/- 4.6 ml.100 g-1.min-1. The proportion of continuously perfused capillaries, i.e., those with continuous flow throughout the 60-s observation period, decreased from 95.9 +/- 0.6% at the shortest sarcomere lengths to 56.5 +/- 0.7% at the longest sarcomere lengths and was correlated significantly with the reduced capillary diameter (r = 0.711, P < 0.01; n = 18). We conclude that alterations in capillary geometry and luminal diameter consequent to increased muscle sarcomere length are associated with a reduction in mean capillary red blood cell velocity and a greater proportion of capillaries in which red blood cell flow is stopped or intermittent. Thus not only does muscle stretching reduce bulk blood (and oxygen) delivery, it also alters capillary red blood cell flow dynamics, which may further impair blood-tissue oxygen exchange.


1999 ◽  
Vol 277 (2) ◽  
pp. H508-H514 ◽  
Author(s):  
Charmaine B. S. Henry ◽  
Brian R. Duling

The endothelial cell glycocalyx influences blood flow and presents a selective barrier to movement of macromolecules from plasma to the endothelial surface. In the hamster cremaster microcirculation, FITC-labeled Dextran 70 and larger molecules are excluded from a region extending almost 0.5 μm from the endothelial surface into the lumen. Red blood cells under normal flow conditions are excluded from a region extending even farther into the lumen. Examination of cultured endothelial cells has shown that the glycocalyx contains hyaluronan, a glycosaminoglycan which is known to create matrices with molecular sieving properties. To test the hypothesis that hyaluronan might be involved in establishing the permeation properties of the apical surface glycocalyx in vivo, hamster microvessels in the cremaster muscle were visualized using video microscopy. After infusion of one of several FITC-dextrans (70, 145, 580, and 2,000 kDa) via a femoral cannula, microvessels were observed with bright-field and fluorescence microscopy to obtain estimates of the anatomic diameters and the widths of fluorescent dextran columns and of red blood cell columns (means ± SE). The widths of the red blood cell and dextran exclusion zones were calculated as one-half the difference between the bright-field anatomic diameter and the width of the red blood cell column or dextran column. After 1 h of treatment with active Streptomyces hyaluronidase, there was a significant increase in access of 70- and 145-kDa FITC-dextrans to the space bounded by the apical glycocalyx, but no increase in access of the red blood cells or in the anatomic diameter in capillaries, arterioles, and venules. Hyaluronidase had no effect on access of FITC-Dextrans 580 and 2,000. Infusion of a mixture of hyaluronan and chondroitin sulfate after enzyme treatment reconstituted the glycocalyx, although treatment with either molecule separately had no effect. These results suggest that cell surface hyaluronan plays a role in regulating or establishing permeation of the apical glycocalyx to macromolecules. This finding and our prior observations suggest that hyaluronan and other glycoconjugates are required for assembly of the matrix on the endothelial surface. We hypothesize that hyaluronidase creates a more open matrix, enabling smaller dextran molecules to penetrate deeper into the glycocalyx.


Sign in / Sign up

Export Citation Format

Share Document