scholarly journals Karakteristik Minyak dan Gas Hasil Proses Dekomposisi Termal Plastik Jenis Low Density Polyethylene (LDPE)

Author(s):  
Ratih Puspita Liestiono ◽  
Muhammad Sigit Cahyono ◽  
Wira Widyawidura ◽  
Agus Prasetya ◽  
Mochamad Syamsiro

<p>Penelitian ini bertujuan untuk mengetahui karakteristik minyak dan gas hasil proses dekomposisi termal (pirolisis) sampah plastik jenis l<em>ow density polyethylene</em> (LDPE) dengan berbagai variabel laju kenaikan suhu selama proses pirolisis terjadi. Pada proses ini digunakan reaktor pirolisis kapasitas 2 kg dengan laju kenaikan suhu sebesar 2, 4, dan 6 °C/menit sebagai variabel penelitian. Minyak dan gas yang terbentuk ditampung dalam wadah penampung dan diukur rendemennya. Karakteristik gas yang dihasilkan kemudian diuji di laboratorium menggunakan peralatan GC-MS dan peralatan uji sifat fisik khusus untuk minyak hasil pirolisis. Berdasarkan hasil penelitian, didapatkan bahwa semakin tinggi laju kenaikan suhu, minyak yang diahsilkan semakin banyak dan gas semakin sedikit. Rendemen minyak terbesar sebesar 35,83 % dihasilkan pada proses pirolisis dengan laju kenaikan suhu 6 °C/menit, dimana pada saat itu, nilai rendemen gas adalah paling kecil, sebesar 5,83 %. Sementara hasil identifikasi gas, yang paling dominan adalah gas jenis butena, dimana kadarnya semakin kecil seiring dengan laju kenaikan suhu. Kandungan gas butena terbesar sebesar 98% pada laju kenaikan suhu 2 °C/menit. Sementara berdasarkan uji sifat fisik, karakteristik minyak plastik mendekati sifat-sifat bahan bakar minyak, terutama kerosen., sehingga cukup layak apabila dijadikan sebagai bahan bakar alternatif pengganti BBM.</p><p><em>This study aims to determine the characteristics of oil and gas from the thermal decomposition (pyrolysis) process of waste </em><em>low density polyethylene (LDPE) type plastic with various temperature increase rate variables during the pyrolysis process. In this process a 2 kg capacity pyrolysis reactor is used with a temperature increase of 2, 4, and 6 °C/min as the research variable. The oil and gas that is formed is stored in a container and the yield is measured. The characteristics of the gases produced are then tested in the laboratory using GC-MS equipment and special physical property test equipment for pyrolysis oils. Based on the research results, it was found that the higher the rate of temperature rise, the more oil is produced and the less gas. The largest oil yield of 35.83 % was produced in the pyrolysis process with a rate of temperature rise of 6 °C/min, where at that time, the value of the gas yield was the smallest, amounted to 5.83 %. While the gas identification results, the most dominant is the type of butene gas, where the levels get smaller along with the rate of temperature rise. The biggest butene gas content is 98 % at a rate of temperature rise of 2 °C/min. While based on the physical properties test, the characteristics of plastic oil approach the properties of fuel oil, especially kerosene, so it is quite feasible if used as an alternative fuel to substitute fuel.</em></p>

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Seyed Mousa FakhrHoseini ◽  
Majid Dastanian

Using thermodynamic models is a desired method for predicting an equilibrium when occurring in a system. If a thermodynamic model can predict an equilibrium condition in a pyrolysis, for a new way will be open for scientists in predicting equilibrium in a reaction without need to kinetic models. In this work, low-density polyethylene, polypropylene, and polyethylene terephthalate were used instead of feed of pyrolysis process. The process was maintained at 500°C with 5 different temperature raising ratios 6, 8, 10, 12, and 14. Then the process was modeled thermodynamically using NRTL activity coefficient model. Using this model, the binary interaction coefficients were investigated for the system of “char, oil, and gas.” Results showed that polyethylene and polypropylene produced the maximum liquid product. Calculated RMSD objective function was 0.0157; that it is acceptable for this process.


2020 ◽  
Vol 38 (12) ◽  
pp. 1331-1344
Author(s):  
Shohel Siddique ◽  
Kyari Yates ◽  
Kerr Matthews ◽  
Laszlo J Csetenyi ◽  
James Njuguna

Oil-based mud (OBM) waste from the oil and gas exploration industry can be valorised to tailor-made reclaimed clay-reinforced low-density polyethylene (LDPE) nanocomposites. This study aims to fill the information gap in the literature and to provide opportunities to explore the effective recovery and recycling techniques of the resources present in the OBM waste stream. Elemental analysis using inductively coupled plasma–optical emission spectrometry (ICP-OES) and X-ray fluorescence analysis, chemical structural analysis by Fourier transform infrared (FTIR) spectroscopy, and morphological analysis of LDPE/organo-modified montmorillonite (LDPE/MMT) and LDPE/OBM slurry nanocomposites by scanning electron microscopy (SEM) have been conducted. Further analysis including calorimetry, thermogravimetry, spectroscopy, microscopy, energy dispersive X-ray analysis and X-ray diffraction (XRD) was carried out to evaluate the thermo-chemical characteristics of OBM waste and OBM clay-reinforced LDPE nanocomposites, confirming the presence of different clay minerals including inorganic salts in OBM slurry powder. The microscopic analysis revealed that the distance between polymer matrix and OBM slurry filler is less than that of MMT, which suggests better interfacial adhesion of OBM slurry compared with the adhesion between MMT and LDPE matrix. This was also confirmed by XRD analysis, which showed the superior delamination structure OBM slurry compared with the structure of MMT. There is a trend noticeable for both of these fillers that the nanocomposites with higher percentage filler contents (7.5 and 10.0 wt% in this case) were indicated to act as a thermal conductive material. The heat capacity values of nanocomposites decreased about 33% in LDPE with 7.5 wt% MMT and about 17% in LDPE with 10.0 wt% OBM slurry. It was also noted, for both nanocomposites, that the residue remaining after 1000°C increases with the incremental wt% of fillers in the nanocomposites. There is a big difference in residue amount (in %) left after thermogravimetric analysis in the two nanocomposites, indicating that OBM slurry may have significant influence in decomposing LDPE matrix; this might be an interesting area to explore in the future. The results provide insight and opportunity to manufacture waste-derived renewable nanocomposites with enhanced structural and thermal properties.


2007 ◽  
Vol 124-126 ◽  
pp. 1757-1760 ◽  
Author(s):  
Jong Ki Jeon ◽  
Hyun Ju Park ◽  
Jin Heong Yim ◽  
Ji Man Kim ◽  
Jin Ho Jung ◽  
...  

Applicability of Al-MCM-48 as a catalyst for the linear low density polyethylene (LLDPE) degradation was investigated using a thermogravimetric analyzer as well as a batch reactor. The degradation products were analyzed by GC/MS, GC-TCD and GC-FID. The activation energy of LLDPE degradation was lowered by the addition of Al-MCM-48. The oil and gas yields were higher over Al-MCM-48 than those over Si-MCM-48. Al-MCM-48 generated mainly C7-C10 hydrocarbons, while Si-MCM-48 exhibited the relatively broader distribution of the oil products (C8-C14). Al-MCM-48 showed high catalytic stability for the LLDPE degradation.


2021 ◽  
Vol 5 (1) ◽  
pp. 61
Author(s):  
Novarini Novarini ◽  
Sigit Kurniawan ◽  
Rusdianasari Rusdianasari ◽  
Yohandri Bow

Limbah plastik Low Density Poly Ethylene (LDPE) tidak dapat terurai oleh mikroorganisme, tidak bernilai jual sehingga tertimbun di Tempat Pembuangan Sampah Akhir. Salah satu metoda pengolahan limbah plastik adalah proses pirolisis. Tujuan penelitian ini menentukan jenis bahan bakar minyak (BBM) produk pirolisis dan menentukan efisiensi tertinggi yaitu nilai tertinggi energi yang dihasilkan terhadap penggunaan bahan bakar untuk proses pirolisis. Peralatan pirolisis yang digunakan adalah 1 unit reaktor dan 1 unit kondensor. Karakteristik BBM yang dianalisa adalah cetane index, density, sulfur content, kinematic viscosity, flash point, dan caloric value dari proses pirolisis yang memvariasikan temperatur pembakaran di reaktor 200°C, 250°C, 300°C dan proses di reaktor dengan dan tanpa penggunaan 1% katalis zeolit alam terhadap 2,5 kg limbah plastik LDPE selama 6 jam. Setelah BBM yang dihasilkan terindentifikasi jenisnya, dilakukan pengkajian efisiensi energi produk BBM terhadap penggunaan bahan bakar pada proses pirolisis. Hasil analisa terhadap karakteristik produk BBM yang dihasilkan di setiap variasi temperatur pirolisis dengan dan tanpa penggunaan katalis merupakan bahan bakar jenis kerosin. Efisiensi tertinggi sebesar 72,51% adalah pada kerosin yang dihasilkan pada pirolisis menggunakan katalis pada temperatur 250°C dengan perbandingan nilai energi 20.402 kkal untuk kerosin hasil pirolisis limbah plastik LDPE dan 28.137 kkal untuk penggunaan bahan bakar Liquefied Petroleum Gas (LPG) pada proses pirolisis. Pirolisis dengan penggunaan katalis zeolit 1% pada suhu 250°C terbukti menjadi cara yang efisien dan berkelanjutan untuk pengolahan limbah LDPE menjadi BBM jenis kerosin.Low-Density Poly Ethylene (LDPE), plastic waste cannot be broken down by microorganisms in the soil, has no sale value, so it is buried in the final waste disposal site. One of the plastic waste treatment methods is the pyrolysis process. The purpose of this study was to determine the type of fuel oil from pyrolysis products and to determine the energy efficiency produced against the highest fuel use. The pyrolysis equipment used is 1 reactor unit and 1 condenser unit. The characteristics of the fuel oil product analyzed are the cetane index, density, sulfur content, kinematic viscosity, flash point, and caloric value of the pyrolysis process which varies the combustion temperature in the reactor by 200°C, 250°C, 300°C and the process in the reactor, with and without the use of natural zeolite catalysts 1% against 2.5 kg of LDPE plastic waste for 6 hours. After the type of fuel produced is identified, an energy efficiency assessment of the fuel product is carried out on the use of fuel in the pyrolysis process. The results analysis show that the all product of fuel oil is a kerosene-type of fuel. The highest efficiency of 72.51% is the kerosene produced in pyrolysis using a catalyst at a temperature of 250°C with an energy value ratio of 20,402 kcal for kerosene from pyrolysis of LDPE plastic waste and 28,137 kcal for the use of Liquefied Petroleum Gas (LPG) fuel in the pyrolysis process. Pyrolysis using a 1% zeolite catalyst at 250°C has proven to be an efficient and sustainable way to treat LDPE waste into kerosene fuel.


2019 ◽  
Vol 56 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Marius Constantinescu ◽  
Felicia Bucura ◽  
Roxana-Elena Ionete ◽  
Violeta-Carolina Niculescu ◽  
Eusebiu Ilarian Ionete ◽  
...  

The pyrolysis can be an attractive way to reduce the plastic waste and, in the same time, to obtain alternative conventional fuels. In this respect, four polymers (low-density polyethylene, high-density polyethylene, propylene and polystyrene) were used in the pyrolysis process. The experiments were carried out by using an in-house plant, which allowed a maximum test temperature of 450 �C. The product oil and the derived gas from the pyrolysis process were evaluated using different techniques, such as elemental analysis (EA), calorimetry, gas chromatography (GC), gas chromatography coupled with mass spectrometry (GC-MS). Furthermore, for a comparative study two catalysts, zeolite and lignite, were also used for the pyrolysis process, in order to observe their influences on the final products. The higher heating value obtained for the oil was in the 40.17-45.35 MJ/kg range, acceptable for the use of these oil as an alternative fuel for diesel engine. Also, the sulphur content from the obtained oil does not cause environment problems, being lower than the allowed limits (10 mg/L). In addition, the pyrolysis derived gas was rich in hydrocarbons, conducting to a high calorific value, in the 73.42 - 121.18 MJ/kg range.


Sign in / Sign up

Export Citation Format

Share Document