scholarly journals Kajian Karakteristik dan Energi pada Pirolisis Limbah Plastik Low Density Polyethylene (LDPE)

2021 ◽  
Vol 5 (1) ◽  
pp. 61
Author(s):  
Novarini Novarini ◽  
Sigit Kurniawan ◽  
Rusdianasari Rusdianasari ◽  
Yohandri Bow

Limbah plastik Low Density Poly Ethylene (LDPE) tidak dapat terurai oleh mikroorganisme, tidak bernilai jual sehingga tertimbun di Tempat Pembuangan Sampah Akhir. Salah satu metoda pengolahan limbah plastik adalah proses pirolisis. Tujuan penelitian ini menentukan jenis bahan bakar minyak (BBM) produk pirolisis dan menentukan efisiensi tertinggi yaitu nilai tertinggi energi yang dihasilkan terhadap penggunaan bahan bakar untuk proses pirolisis. Peralatan pirolisis yang digunakan adalah 1 unit reaktor dan 1 unit kondensor. Karakteristik BBM yang dianalisa adalah cetane index, density, sulfur content, kinematic viscosity, flash point, dan caloric value dari proses pirolisis yang memvariasikan temperatur pembakaran di reaktor 200°C, 250°C, 300°C dan proses di reaktor dengan dan tanpa penggunaan 1% katalis zeolit alam terhadap 2,5 kg limbah plastik LDPE selama 6 jam. Setelah BBM yang dihasilkan terindentifikasi jenisnya, dilakukan pengkajian efisiensi energi produk BBM terhadap penggunaan bahan bakar pada proses pirolisis. Hasil analisa terhadap karakteristik produk BBM yang dihasilkan di setiap variasi temperatur pirolisis dengan dan tanpa penggunaan katalis merupakan bahan bakar jenis kerosin. Efisiensi tertinggi sebesar 72,51% adalah pada kerosin yang dihasilkan pada pirolisis menggunakan katalis pada temperatur 250°C dengan perbandingan nilai energi 20.402 kkal untuk kerosin hasil pirolisis limbah plastik LDPE dan 28.137 kkal untuk penggunaan bahan bakar Liquefied Petroleum Gas (LPG) pada proses pirolisis. Pirolisis dengan penggunaan katalis zeolit 1% pada suhu 250°C terbukti menjadi cara yang efisien dan berkelanjutan untuk pengolahan limbah LDPE menjadi BBM jenis kerosin.Low-Density Poly Ethylene (LDPE), plastic waste cannot be broken down by microorganisms in the soil, has no sale value, so it is buried in the final waste disposal site. One of the plastic waste treatment methods is the pyrolysis process. The purpose of this study was to determine the type of fuel oil from pyrolysis products and to determine the energy efficiency produced against the highest fuel use. The pyrolysis equipment used is 1 reactor unit and 1 condenser unit. The characteristics of the fuel oil product analyzed are the cetane index, density, sulfur content, kinematic viscosity, flash point, and caloric value of the pyrolysis process which varies the combustion temperature in the reactor by 200°C, 250°C, 300°C and the process in the reactor, with and without the use of natural zeolite catalysts 1% against 2.5 kg of LDPE plastic waste for 6 hours. After the type of fuel produced is identified, an energy efficiency assessment of the fuel product is carried out on the use of fuel in the pyrolysis process. The results analysis show that the all product of fuel oil is a kerosene-type of fuel. The highest efficiency of 72.51% is the kerosene produced in pyrolysis using a catalyst at a temperature of 250°C with an energy value ratio of 20,402 kcal for kerosene from pyrolysis of LDPE plastic waste and 28,137 kcal for the use of Liquefied Petroleum Gas (LPG) fuel in the pyrolysis process. Pyrolysis using a 1% zeolite catalyst at 250°C has proven to be an efficient and sustainable way to treat LDPE waste into kerosene fuel.

2020 ◽  
Vol 253 ◽  
pp. 119837 ◽  
Author(s):  
Claudia Santagata ◽  
Gaetano Iaquaniello ◽  
Annarita Salladini ◽  
Emanuela Agostini ◽  
Mauro Capocelli ◽  
...  

2019 ◽  
Author(s):  
Alamanda Ayu Aquila

The increasing use of plastic bottles in the environment caused by the rise of teenagers who like to show off a brand of plastic-based beverage products. This makes environmental conditions worse because plastic waste takes a long time to decompose. From many studies conducted, it turns out that plastic waste can be converted into fuel oil. Waste that is used is indeed derived from plastic materials because plastic waste that is processed by pyrolysis produces liquid material that will form oil. There is a simple way of processing plastic waste into fuel oil by means of pyrolysis. This method is easy for everyone to do because it is an easy tool to make. The purpose of this study is to compare the quality of fuels made from the pyrolysis process with fuels that already exist today.


Author(s):  
IGN Nitya Santhiarsa

Currently, plastic waste is a very serious threat because plastic waste pollution can harm all living things around and also harm the environment. The increasing volume of plastic waste is due to the lack of processing technology, so that the volume of plastic waste is increasing day by day. Plastic is a material that is difficult to decompose because it is non-biodegradable. One application of plastic waste processing technology offered in this study is to use the pyrolysis principle. Pyrolysis is a method of converting plastic into fuel oil through a thermal decomposition process without the use of oxygen. The pyrolysis process used with a variety of reactors equipped with glass wool and reactor variations without glass wool. The purpose of this study was to compare the yield of pyrolysis oil with a variety of reactors equipped with glass wool and reactors without glass wool. The plastic used is OPP (oriented polypropylene), with a constant reactor heating temperature of 200° C. The pyrolysis process is carried out for 1 hour each test, and the condenser cooling temperature is 28° C. Based on the results of the research, the reactor variation with glass wool got the highest oil weight of 175 grf, while the reactor variation without glass wool got the lowest oil weight of 17 grf. With a variety of reactors equipped with glass wool, the heat generated is more concentrated into the reactor core, resulting in higher oil weight and a more efficient pyrolysis process.


2020 ◽  
Vol 16 (2) ◽  
pp. 95-112
Author(s):  
Arieyanti Dwi Astuti ◽  
Jatmiko Wahyudi ◽  
Aeda Ernawati ◽  
Siti Qorrotu Aini

ENGLISHEstablishment of a company which recycles plastic waste into plastic pellet not only benefits for eliminating waste but also for driving circular economy. Recycling plastic waste in particular low density polyethylene (LDPE) can be conducted in a small-scale industry with simple technology and low investment. This study aims to analyze the feasibility of a plastics pellet business from both financial and non-financial perspectives. Financial perspective encompasses net present value (NPV), internal rate of return (IRR) and payback period (PP) while non-financial perspective includes market, technical, socio-economic and environmental aspects. The result shows that according to both financial and non-financial aspects, the establishment of recycling company is feasible. The recycling business has the NPV= IDR 10,631,879,342; IRR = 15.38%; and PP = 2 years 1 months 26 days. As main raw material, LDPE is abundant and the demand for plastic pellet continues to grow. Technically, the company will be situated close to landfill considering many factors in order to comply with the regulation. From socio-economic aspect, the company will create jobs and generates local taxes. Environmentally, utilizing 3.6 tons of LDPE daily from landfill enables the company to lengthen life span of landfill and to eliminate plastic waste. INDONESIAPendirian perusahaan daur ulang yang memproses sampah plastik menjadi biji plastik memberikan manfaat tidak hanya untuk mengurangi timbulan sampah namun juga dapat untuk menggerakkan perputaran ekonomi. Daur ulang sampah plastik khususnya plastik jenis Low Density Poly Ethylene (LDPE) dapat dijalankan oleh perusahaan berskala kecil dengan menggunakan teknologi sederhana dan modal yang tidak terlalu tinggi. Tujuan penelitian ini untuk menganalisis kelayakan usaha biji plastik ditinjau dari aspek finansial dan non finansial. Analisis data menggunakan pendekatan kuantitatif. Hasil penelitian menunjukkan bahwa usaha daur ulang sampah plastik jenis LDPE menjadi biji plastik layak untuk dijalankan. Berdasarkan aspek finansial, usaha ini memiliki nilai NPV = Rp10.631.879.342; IRR = 15,38%; PP = 2 tahun 1 bulan 26 hari. Bahan baku sampah plastik LDPE tersedia melimpah dan belum banyak didaur ulang. Selain itu permintaan terhadap produk biji plastik terus mengalami peningkatan. Lokasi perusahaan direncanakan terletak tidak jauh dari Tempat Pemrosesan Akhir (TPA) Sukoharjo Kabupaten Pati dengan pertimbangan lokasi tersebut memenuhi persyaratan yang ditetapkan oleh peraturan. Pendirian usaha daur ulang berpotensi membuka lapangan kerja dan memberikan pajak daerah. Ditinjau dari aspek lingkungan, kemampuan perusahaan untuk mendaur ulang 3,6 ton sampah plastik LDPE per hari berkontribusi untuk memperpanjang usia pakai TPA dan dapat mengurangi timbulan sampah plastik.


Author(s):  
Ratih Puspita Liestiono ◽  
Muhammad Sigit Cahyono ◽  
Wira Widyawidura ◽  
Agus Prasetya ◽  
Mochamad Syamsiro

<p>Penelitian ini bertujuan untuk mengetahui karakteristik minyak dan gas hasil proses dekomposisi termal (pirolisis) sampah plastik jenis l<em>ow density polyethylene</em> (LDPE) dengan berbagai variabel laju kenaikan suhu selama proses pirolisis terjadi. Pada proses ini digunakan reaktor pirolisis kapasitas 2 kg dengan laju kenaikan suhu sebesar 2, 4, dan 6 °C/menit sebagai variabel penelitian. Minyak dan gas yang terbentuk ditampung dalam wadah penampung dan diukur rendemennya. Karakteristik gas yang dihasilkan kemudian diuji di laboratorium menggunakan peralatan GC-MS dan peralatan uji sifat fisik khusus untuk minyak hasil pirolisis. Berdasarkan hasil penelitian, didapatkan bahwa semakin tinggi laju kenaikan suhu, minyak yang diahsilkan semakin banyak dan gas semakin sedikit. Rendemen minyak terbesar sebesar 35,83 % dihasilkan pada proses pirolisis dengan laju kenaikan suhu 6 °C/menit, dimana pada saat itu, nilai rendemen gas adalah paling kecil, sebesar 5,83 %. Sementara hasil identifikasi gas, yang paling dominan adalah gas jenis butena, dimana kadarnya semakin kecil seiring dengan laju kenaikan suhu. Kandungan gas butena terbesar sebesar 98% pada laju kenaikan suhu 2 °C/menit. Sementara berdasarkan uji sifat fisik, karakteristik minyak plastik mendekati sifat-sifat bahan bakar minyak, terutama kerosen., sehingga cukup layak apabila dijadikan sebagai bahan bakar alternatif pengganti BBM.</p><p><em>This study aims to determine the characteristics of oil and gas from the thermal decomposition (pyrolysis) process of waste </em><em>low density polyethylene (LDPE) type plastic with various temperature increase rate variables during the pyrolysis process. In this process a 2 kg capacity pyrolysis reactor is used with a temperature increase of 2, 4, and 6 °C/min as the research variable. The oil and gas that is formed is stored in a container and the yield is measured. The characteristics of the gases produced are then tested in the laboratory using GC-MS equipment and special physical property test equipment for pyrolysis oils. Based on the research results, it was found that the higher the rate of temperature rise, the more oil is produced and the less gas. The largest oil yield of 35.83 % was produced in the pyrolysis process with a rate of temperature rise of 6 °C/min, where at that time, the value of the gas yield was the smallest, amounted to 5.83 %. While the gas identification results, the most dominant is the type of butene gas, where the levels get smaller along with the rate of temperature rise. The biggest butene gas content is 98 % at a rate of temperature rise of 2 °C/min. While based on the physical properties test, the characteristics of plastic oil approach the properties of fuel oil, especially kerosene, so it is quite feasible if used as an alternative fuel to substitute fuel.</em></p>


Author(s):  
Nayane Nogueira da Silva ◽  
Fabiana Rocha Pinto ◽  
David Barbosa de Alencar ◽  
Ricardo Silva Parente

Given the scenario of difficulty of equalizing treatment and disposal costs, environmental risks and reduction of mass and volume of waste, the pyrolysis process presents itself as a promising option of heat treatment for the most varied types of waste. The present work aims to enable the transformation of plastic waste into combustion engine fuels. And specifically, perform the pyrolysis process for fuel generation through plastic waste, and describe the benefits generated by the transformation process. The methodology used is the case study, with qualitative approach. To obtain the fuel, it was necessary to use equipment that can degrade the plastic waste by heating it, being possible with the use of a pyrolysis oven. Heating the plastic residue inside the oven without the presence of oxygen causes the residue to melt without burning, releasing vapors, which upon exiting the heating chamber and finding the condensation chamber turns the vapor into liquid, more precisely into fuel oil. However, it was noticed that the transformation of plastic waste into fuel through pyrolysis causes the reduction of the impacts generated by solid waste disposal in the environment, water and air. In addition, it enables a new form of fuel generation, since previously it could only generate fuel from oil.


2011 ◽  
Vol 2 (4) ◽  
pp. 131-148 ◽  
Author(s):  
Francis Vidya ◽  
Subin S. Raghul ◽  
Sarita G Bhat ◽  
Eby Thomas Thachil

The main objective of this study was to enhance the rate of UV and biodegradation of polyethylene by incorporating biodegradable materials and prooxidants. Prooxidants such as transition metal complexes are capable of initiating photooxidation and polymer chain cleavage, rendering the product more susceptible to biodegradation. In this work, the effect of (1) a metallic photoinitiator, cobalt stearate, and (2) different combinations of cobalt stearate and vegetable oil on the photooxidative degradation of linear low-density poly(ethylene)-poly(vinyl alcohol) (LLDPE/PVA) blend films has been investigated. For this, film-grade LLDPE was blended with different proportions of PVA. PVA is widely used in the industrial field, and recently it has attracted increasing attention as a water-soluble biodegradable polymer. Cobalt stearate and vegetable oil were added to the blends as prooxidants. The blends were prepared by melt mixing in a Thermo HAAKE Polylab system. Thin films containing these additives were prepared by a subsequent compression moulding process. The effect of UV exposure on LLDPE/PVA films in the presence as well as absence of these additives was investigated. Tensile properties, FTIR spectra, and scanning electron microscopy (SEM) were employed to investigate the degradation behaviour. It was found


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Richard Jumeau ◽  
Patrice Bourson ◽  
Michel Ferriol ◽  
François Lahure ◽  
Marc Ponçot ◽  
...  

The possibilities of applications of vibrational spectroscopy techniques (Raman spectroscopy) in the analysis and characterization of polymers are more and more used and accurate. In this paper, our purpose is to characterize Low Density Poly(Ethylene) (LDPE) grades by Raman spectroscopy and in particular with CH2 Raman vibration modes. With temperature measurements, we determine different amorphous and crystalline Raman assignments. From these results and on the basis of the evolution of CH2 bending Raman vibration modes, we develop a phenomenological model in correlation with Differential Scanning Calorimetry and in particular with crystalline lamella thickness determination.


Sign in / Sign up

Export Citation Format

Share Document