A Beamforming Algorithm for MIMO SWIPT Systems

2018 ◽  
Vol 2 (3) ◽  
pp. 110
Author(s):  
Nguyen Duy-Nhat Vien

Efficient usage of energy resources is a growing concern in today’s communication systems. Energy harvesting is a new paradigm and allows the nodes to recharge their batteries from the environment. In this paper, we focus on the design of optimal linear beamformer for multi- input multi-output (MIMO) simultaneous wireless information and power transfer (SWIPT) system. We formulate the problem of maximizing the information rate while keeping the energy harvested at the energy receivers above given levels. Finally, simulation results demonstrate the efficiency of the proposed algorithm.

Author(s):  
Estevão Fuzaro de Almeida ◽  
Fabio Roberto Chavarette ◽  
Douglas da Costa Ferreira

Author(s):  
Kamal Hamid ◽  
Nadim Chahine

Wireless communications became one of the most widespread means for transferring information. Speed and reliability in transferring the piece of information are considered one of the most important requirements in communication systems in general. Moreover, Quality and reliability in any system are considered the most important criterion of the efficiency of this system in doing the task it is designed to do and its ability for satisfactory performance for a certain period of time, Therefore, we need fault tree analysis in these systems in order to determine how to detect an error or defect when happening in communication system and what are the possibilities that make this error happens. This research deals with studying TETRA system components, studying the physical layer in theory and practice, as well as studying fault tree analysis in this system, and later benefit from this study in proposing improvements to the structure of the system, which led to improve gain in Link Budget. A simulation and test have been done using MATLAB, where simulation results have shown that the built fault tree is able to detect the system’s work by 82.4%.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 3024 ◽  
Author(s):  
Yaya Zhang ◽  
Jianzhong Zhu ◽  
Xueyu Dong ◽  
Pinchao Zhao ◽  
Peng Ge ◽  
...  

The power quality of new energy resources has received tremendous attention recently. The control approach for the inverter, an interface between the new energy resources, and the infinite bus system is of vital importance. For the virtual synchronous generator (VSG), one of the research hotspots in the inverter control field, there are some challenges remaining to be dealt with. First is the contradiction between the rapid response and overshoot of active power output if VSG is connected to the grid. Secondly, the active power is deeply influenced by the fluctuation of gird frequency and this may bring power oscillation to VSG in weak grids. In this article, an active power controller for power tracking of grid-connected VSG is designed based on linear active disturbance rejection control (LADRC) by compensating for the lumped disturbance in a feedforward fashion. The parameters of the controller are analyzed and tuned in the frequency domain to acquire a desirable control performance. Moreover, the robustness of the control system is also considered. Simulation results show that the designed control system can transmit active power to the grid in a timely manner with no overshoot, as demanded. Additionally, it can output active power steadily according to the power reference without using a phase-locked loop (PLL) when the grid frequency has different features of fluctuation. In addition, the simulation results demonstrate that the improved VSG has strong robustness to the model parameter perturbation and mismatch.


2003 ◽  
Vol 13 (06) ◽  
pp. 1599-1608 ◽  
Author(s):  
Chao Tao ◽  
Gonghuan Du ◽  
Yu Zhang

In this paper, we propose a new approach to breaking down chaotic communication scheme by attacking its encryption keys. A remarkable advancement is that it can decode the hidden message exactly. This makes it become possible to break down some cascaded chaotic communication systems. We also decode digital information from the cascaded heterogeneous chaotic communication system and give the simulation results.


Sign in / Sign up

Export Citation Format

Share Document