scholarly journals Quantum Computing Concepts with Deutsch Jozsa Algorithm

Author(s):  
Poornima Aradyamath ◽  
Naghabhushana N M ◽  
Rohitha Ujjinimatad

In this paper, we briefly review the basic concepts of quantum computation,  entanglement,  quantum cryptography and quantum fourier  transform.   Quantum algorithms like Deutsch Jozsa, Shor’s   factorization and Grover’s data search are developed using fourier  transform  and quantum computation concepts to build quantum computers.  Researchers are finding a way to build quantum computer that works more efficiently than classical computer.  Among the  standard well known  algorithms  in the field of quantum computation  and communication we  describe  mathematically Deutsch Jozsa algorithm  in detail for  2  and 3 qubits.  Calculation of balanced and unbalanced states is shown in the mathematical description of the algorithm.

2021 ◽  
Author(s):  
Eric Sakk

The application of the quantum Fourier transform (QFT) within the field of quantum computation has been manifold. Shor’s algorithm, phase estimation and computing discrete logarithms are but a few classic examples of its use. These initial blueprints for quantum algorithms have sparked a cascade of tantalizing solutions to problems considered to be intractable on a classical computer. Therefore, two main threads of research have unfolded. First, novel applications and algorithms involving the QFT are continually being developed. Second, improvements in the algorithmic complexity of the QFT are also a sought after commodity. In this work, we review the structure of the QFT and its implementation. In order to put these concepts in their proper perspective, we provide a brief overview of quantum computation. Finally, we provide a permutation structure for putting the QFT within the context of universal computation.


2015 ◽  
Vol 13 (07) ◽  
pp. 1550059 ◽  
Author(s):  
Shruti Dogra ◽  
Arvind Dorai ◽  
Kavita Dorai

The quantum Fourier transform (QFT) is a key ingredient of several quantum algorithms and a qudit-specific implementation of the QFT is hence an important step toward the realization of qudit-based quantum computers. This work develops a circuit decomposition of the QFT for hybrid qudits based on generalized Hadamard and generalized controlled-phase gates, which can be implemented using selective rotations in NMR. We experimentally implement the hybrid qudit QFT on an NMR quantum emulator, which uses four qubits to emulate a single qutrit coupled to two qubits.


2014 ◽  
Vol 1078 ◽  
pp. 413-416
Author(s):  
Hai Yan Liu

The ultimate goal of quantum calculation is to build high performance practical quantum computers. With quantum mechanics model of computer information coding and computational principle, it is proved in theory to be able to simulate the classical computer is currently completely, and with more classical computer, quantum computation is one of the most popular fields in physics research in recent ten years, has formed a set of quantum physics, mathematics. This paper to electronic spin doped fullerene quantum aided calculation scheme, we through the comprehensive use of logic based network and based on the overall control of the two kinds of quantum computing model, solve the addressing problem of nuclear spin, avoids the technical difficulties of pre-existing. We expect the final realization of the quantum computer will depend on the integrated use of in a variety of quantum computing model and physical realization system, and our primary work shows this feature..


Author(s):  
Renata Wong ◽  
Amandeep Singh Bhatia

In the last two decades, the interest in quantum computation has increased significantly among research communities. Quantum computing is the field that investigates the computational power and other properties of computers on the basis of the underlying quantum-mechanical principles. The main purpose is to find quantum algorithms that are significantly faster than any existing classical algorithms solving the same problem. While the quantum computers currently freely available to wider public count no more than two dozens of qubits, and most recently developed quantum devices offer some 50-60 qubits, quantum computer hardware is expected to grow in terms of qubit counts, fault tolerance, and resistance to decoherence. The main objective of this chapter is to present an introduction to the core quantum computing algorithms developed thus far for the field of cryptography.


2020 ◽  
Vol 8 ◽  
Author(s):  
Hai-Ping Cheng ◽  
Erik Deumens ◽  
James K. Freericks ◽  
Chenglong Li ◽  
Beverly A. Sanders

Chemistry is considered as one of the more promising applications to science of near-term quantum computing. Recent work in transitioning classical algorithms to a quantum computer has led to great strides in improving quantum algorithms and illustrating their quantum advantage. Because of the limitations of near-term quantum computers, the most effective strategies split the work over classical and quantum computers. There is a proven set of methods in computational chemistry and materials physics that has used this same idea of splitting a complex physical system into parts that are treated at different levels of theory to obtain solutions for the complete physical system for which a brute force solution with a single method is not feasible. These methods are variously known as embedding, multi-scale, and fragment techniques and methods. We review these methods and then propose the embedding approach as a method for describing complex biochemical systems, with the parts not only treated with different levels of theory, but computed with hybrid classical and quantum algorithms. Such strategies are critical if one wants to expand the focus to biochemical molecules that contain active regions that cannot be properly explained with traditional algorithms on classical computers. While we do not solve this problem here, we provide an overview of where the field is going to enable such problems to be tackled in the future.


2006 ◽  
Vol 14 (1) ◽  
pp. 21-40 ◽  
Author(s):  
Paul Massey ◽  
John A. Clark ◽  
Susan Stepney

We show how Genetic Programming (GP) can be used to evolve useful quantum computing artefacts of increasing sophistication and usefulness: firstly specific quantum circuits, then quantum programs, and finally system-independent quantum algorithms. We conclude the paper by presenting a human-competitive Quantum Fourier Transform (QFT) algorithm evolved by GP.


2013 ◽  
Vol 11 (01) ◽  
pp. 1350008
Author(s):  
CHEN-FU CHIANG

Due to the great difficulty in scalability, quantum computers are limited in the number of qubits during the early stages of the quantum computing regime. In addition to the required qubits for storing the corresponding eigenvector, suppose we have additional k qubits available. Given such a constraint k, we propose an approach for the phase estimation for an eigenphase of exactly n-bit precision. This approach adopts the standard recursive circuit for quantum Fourier transform (QFT) in [R. Cleve and J. Watrous, Fast parallel circuits for quantum fourier transform, Proc. 41st Annual Symp. on Foundations of Computer Science (2000), pp. 526–536.] and adopts classical bits to implement such a task. Our algorithm has the complexity of O(n log k), instead of O(n2) in the conventional QFT, in terms of the total invocation of rotation gates. We also design a scheme to implement the factorization algorithm by using k available qubits via either the continued fractions approach or the simultaneous Diophantine approximation.


Author(s):  
R. Vilela Mendes

The two essential ideas in this paper are, on the one hand, that a considerable amount of the power of quantum computation may be obtained by adding to a classical computer a few specialized quantum modules and on the other hand, that such modules may be constructed out of classical systems obeying quantum-like equations where a space coordinate is the evolution parameter (thus playing the role of time in the quantum algorithms).


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Vinayak Dixit ◽  
Sisi Jian

AbstractDrive cycles in vehicle systems are important determinants for energy consumption, emissions, and safety. Estimating the frequency of the drive cycle quickly is important for control applications related to fuel efficiency, emission reduction and improving safety. Quantum computing has established the computational efficiency that can be gained. A drive cycle frequency estimation algorithm based on the quantum Fourier transform is exponentially faster than the classical Fourier transform. The algorithm is applied on real world data set. We evaluate the method using a quantum computing simulator, demonstrating remarkable consistency with the results from the classical Fourier transform. Current quantum computers are noisy, a simple method is proposed to mitigate the impact of the noise. The method is evaluated on a 15 qubit IBM-q quantum computer. The proposed method for a noisy quantum computer is still faster than the classical Fourier transform.


2019 ◽  
Vol 12 (3) ◽  
pp. 104
Author(s):  
Casper van der Kerk ◽  
Attila Csala ◽  
Aeilko H. Zwinderman

Quantum computing is a field that aims to exploit the principles of superposition and entanglement to perform computations. By using quantum bits (qubits) a quantum computer is able to perform certain tasks more efficiently when compared to classical computers. While applied quantum computing is still in its early stages, quantum algorithms on simulated quantum computers have already been applied to certain problems in epidemics modeling and image processing. Furthermore, companies like Google and IBM continue to develop new quantum computers with an increasing number of qubits. While much progress has been made in the recent years, the so called ”quantum supremacy”has not yet been achieved, and quantum computing appears to be still unsuitable for most applications in biomedical sciences.


Sign in / Sign up

Export Citation Format

Share Document