scholarly journals Biofilm Formation of Salmonella typhimurium on Stainless Steel in Red Meat Model and the Effect of Bacteriophage on Bacterial Biofilm

2018 ◽  
Vol 12 (3) ◽  
pp. 179-188
Author(s):  
Hossein Tajik ◽  
Mehran Moradi ◽  
Mosatafa Alipour ◽  
Hadi Ghasemmahdi ◽  
◽  
...  
1993 ◽  
Vol 56 (9) ◽  
pp. 750-758 ◽  
Author(s):  
AMY B. RONNER ◽  
AMY C. L. WONG

Biofilm formation by seven strains of Listeria monocytogenes and one strain of Salmonella typhimurium on stainless steel and Buna-n rubber was examined under two nutrient conditions. The type of surface, nutrient level, and organism influenced biofilm development and production of extracellular materials. Buna-n had a strong bacteriostatic effect on L. monocytogenes, and biofilm formation on Buna-n under low nutrient conditions was reduced for four of the seven strains tested. Buna-n was less bacteriostatic toward S. typhimurium. It inhibited the growth of several other pathogens to varying degrees. An ethylene propylene diamine monomer rubber was less inhibitory than Buna-n, and Viton rubber had no effect. The effectiveness of sanitizers on biofilm bacteria was examined. Biofilms were challenged with four types of detergent and nondetergent sanitizers. Resistance to sanitizers was strongly influenced by the type of surface. Bacterial biofilm populations on stainless steel were reduced 3–5 log by all the sanitizers, but those on Buna-n were resistant to these sanitizers and were reduced less than 1–2 log. In contrast, planktonic (suspended) bacteria were reduced 7–8 log by these sanitizers. Chlorine and anionic acid sanitizers generally removed extracellular materials from biofilms better than iodine and quaternary ammonium detergent sanitizers. Scanning electron microscopy demonstrated that biofilm cells and extracellular matrices could remain on sanitized biofilm cells and extracellular matrices could remain surfaces from which no viable cells were recovered.


2003 ◽  
Vol 69 (8) ◽  
pp. 4814-4822 ◽  
Author(s):  
Ann-Cathrin Olofsson ◽  
Malte Hermansson ◽  
Hans Elwing

ABSTRACT N-Acetyl-l-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 983
Author(s):  
Jingzhong Zhou ◽  
Kuoteng Sun ◽  
Songqiang Huang ◽  
Xuemin He ◽  
Zhaowei Hu ◽  
...  

Corrosion is a severe problem for steel structures in humid environments. In particular, humidity usually triggers the surface adhesion of microorganisms, leading to microbiologically induced corrosion. This study aims to explore the effect of bacterial biofilm formation on the pitting corrosion of stainless steel. This research uses electrochemical methods to obtain indirect evidence of the pitting corrosion of steel. In addition, in order to obtain direct evidence of the pitting corrosion of stainless steel, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to characterize the dimensional morphology of the stainless steel after pitting. It was shown that the bacterial adhesion increased with the pH and temperature, which significantly increased the surface roughness of the stainless steel. Electrochemical analysis revealed that the formation of biofilm greatly destroyed the oxide film of 304 SS and accelerated the corrosion of stainless steel by forming an oxygen concentration battery. SEM and AFM analyses showed cracks and dislocations on the surface of stainless steel underneath the attached bacteria, which suggested a direct role of biofilm in corrosion induction. The results presented here show that the bacterial biofilm formation on the steel surfaces significantly accelerated the corrosion and affected the pitting corrosion process of the steel structure.


2013 ◽  
Vol 76 (2) ◽  
pp. 205-212 ◽  
Author(s):  
KAMLESH A. SONI ◽  
ADEMOLA OLADUNJOYE ◽  
RAMAKRISHNA NANNAPANENI ◽  
M. WES SCHILLING ◽  
JUAN L. SILVA ◽  
...  

Persistence of Salmonella biofilms within food processing environments is an important source of Salmonella contamination in the food chain. In this study, essential oils of thyme and oregano and their antimicrobial phenolic constituent carvacrol were evaluated for their ability to inhibit biofilm formation and inactivate preformed Salmonella biofilms. A crystal violet staining assay and CFU measurements were utilized to quantify biofilm cell mass, with evaluating factors such as strain variation, essential oil type, their concentrations, exposure time, as well as biofilm formation surface. Of the three Salmonella strains, Salmonella Typhimurium ATCC 23564 and Salmonella Typhimurium ATCC 19585 produced stronger biofilms than Salmonella Typhimurium ATCC 14028. Biofilm formation by different Salmonella strains was 1.5- to 2-fold higher at 22°C than at 30 or 37°C. The presence of nonbiocidal concentrations of thyme oil, oregano oil, and phenolic carvacrol at 0.006 to 0.012% suppressed Salmonella spp. biofilm formation 2- to 4-fold, but could not completely eliminate biofilm formation. There was high correlation in terms of biofilm inactivation, as determined by the crystal violet–stained optical density (at a 562-nm wavelength) readings and the viable CFU counts. Reduction of biofilm cell mass was dependent on antimicrobial concentration. A minimum concentration of 0.05 to 0.1% of these antimicrobial agents was needed to reduce a 7-log CFU biofilm mass to a nondetectable level on both polystyrene and stainless steel surfaces within 1 h of exposure time.


2000 ◽  
Vol 34 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Outi M Zacheus ◽  
Eila K Iivanainen ◽  
Tarja K Nissinen ◽  
Markku J Lehtola ◽  
Pertti J Martikainen

Author(s):  
B.D. Tall ◽  
K.S. George ◽  
R. T. Gray ◽  
H.N. Williams

Studies of bacterial behavior in many environments have shown that most organisms attach to surfaces, forming communities of microcolonies called biofilms. In contaminated medical devices, biofilms may serve both as reservoirs and as inocula for the initiation of infections. Recently, there has been much concern about the potential of dental units to transmit infections. Because the mechanisms of biofilm formation are ill-defined, we investigated the behavior and formation of a biofilm associated with tubing leading to the water syringe of a dental unit over a period of 1 month.


Sign in / Sign up

Export Citation Format

Share Document