scholarly journals Extrusion of wheat semolina and cocoa shells

2021 ◽  
Vol 4 (2) ◽  
pp. 177
Author(s):  
Nesho Georgiev Toshkov ◽  
Ventsislav Nenov Nenov ◽  
Bojidar Bozadjiev ◽  
Naiden Delchev ◽  
Erik Valov

Extrusion of wheat semolina and milled cocoa shells using a single screw extruder Brabender 20DN was carried out. Full factorial experiment 23 was used to investigate the effect of the quantity of cocoa shells, moisture of the material and temperature of the matrix on the density and expansion index of extrudates. Feed screw speed and screw speed were fixed at 30 and 200 rpm, respectively. Compression ratio of the screw was 4:1. Expansion index values range between 2.0 and 3.36 and a density between 0.099 and 0.223 g/cm3. The increase in moisture content and quantity of cocoa shells leads to a decrease expansion index, while density of extrudates an increase.

2019 ◽  
Vol 2 (1) ◽  
pp. 1
Author(s):  
Nesho Toshkov ◽  
Apostol Simitchiev ◽  
Vencislav Nenov

Extrusion of corn semolina milled with cocoa shells using a single screw extruder “BRABENDER 20 DN” was carried out. Full factorial experimental 22 was used to investigate the effects of the quantity of cocoa shells and moisture of the material on the water absorption index (WAI) and water solubility index (WSI). Working screw speed and feed screw speed were fixed at 200 and 40 rpm, respectively. Compression ratio of the screw was fixed at 4:1. Temperatures of the first, second and third zone were 150, 155 and 160 °C. Water absorption index values range were between 6.71 and 7.6 g/g and the water solubility index between 25.38 and 35.33 %. The increase in moisture content and quantity of cocoa shells leads to an increase in water absorption index and a decrease in water solubility index. Practical applications: Cocoa shells in an amount of up to 10% can be used in the production of extrudates by mixing with corn semolina. Water absorption index values range between 6.71 and 7.6 g/g and the water solubility index between 25.38 and 35.33 %. The resulting regression models can be used to optimize the process. In general, results show that cocoa shells can be mixed with corn semolina for the production of extrudates, which allows us to recommend extrusion processing of cocoa shells as an alternative technology in utilization processing of raw cocoa materials.


2014 ◽  
Vol 941-944 ◽  
pp. 1715-1719
Author(s):  
Yuan Lou Gao ◽  
Xin Wang ◽  
Li Zhou

This paper adopts the method of multi-phase flow to simulate the extrusion process of single-screw extruder based on different screw speed by using the finite element analysis software, and get the conclusion that the screw speed has a significant effect on the extrusion quality and outlet pressure of the single-screw extruder. With the increase of the screw speed, the extrusion quality of the single-screw extruder gets worse and the outlet pressure of the single-screw extruder increases.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Chinnadurai Karunanithy ◽  
Kasiviswanathan Muthukumarappan ◽  
William R. Gibbons

Biofuels from biomass have the potential to reduce the dependency on fossil fuels. An efficient pretreatment method is required to accomplish the target of the Energy Act 2005. Extrusion could be a viable continuous pretreatment method to be explored. The objectives of the current study were to investigate the influence of screw speed and barrel temperature on sugar recovery from the selected warm season grasses and to select a suitable enzyme combination and dose for enzymatic hydrolysis. The ground, moisture-balanced biomasses were pretreated using a single screw extruder at various screw speeds (100, 150, and 200 rpm) and barrel temperatures (50, 75, 100, 150, and 200°C). Cellulase or multienzyme with β-glucosidase was varied from 1 : 1 to 1 : 4 during enzymatic hydrolysis to accomplish the second objective. Screw speed, barrel temperature, and their interaction had a significant influence on sugar recovery from the selected biomasses. A maximum of 28.2, 66.2, and 49.2% of combined sugar recoverywasachieved for switchgrass, big bluestem, prairie cord grass when pretreated at a screw speed of 200, 200, and 150 rpm and at a barrel temperature of 75, 150, and 100°C, respectively, using cellulase and β-glucosidase at a ratio of 1 :  4. Extrusion pretreatment of these biomasses used only 28–37% of the rated extruder power.


2022 ◽  
Vol 5 (1) ◽  
pp. 44
Author(s):  
Pranabendu Mitra ◽  
Sagar Khanvilkar ◽  
Sai Kumar Samudrala ◽  
Kaushal Sunil Shroff

The main objective of this study was to convert the cranberry pomace into value-added extruded cereals/snacks blending with rice flour using a single screw extruder based on the physicochemical properties of extrudates because utilization of the byproduct cranberry pomace would be necessary for the growth of cranberry juice processing industries and the extruded snacks/cereals with higher fiber and antioxidant and less carbohydrate would be required to fulfill the consumers’ demand. The six different formulations by blending 0, 5, 10, 15, 20 and 25% cranberry pomace with 100, 95, 90, 85, 80 and 75% of rice flour, respectively, were extruded using a single screw extruder. The temperature (150℃), screw speed (270 rpm), feed rate (20 Kg/hr) and feed moisture content (35%) were constant during extrusion. The physicochemical properties of the extrudates were characterized to determine the desirable formulations. The results indicated that radial expansion ratio (1.11-1.67), the solid density (0.71-0.76 g/mL), piece density (0.20-0.63 g/mL), porosity (14.49-72.38%), hardness (23-157.73 N), crispness (4.17-13.5), moisture content (3.22-4.39%), water activity (0.14-0.36) and the water solubility (7.07-30.80%) of rice flour and cranberry pomace blend extrudates were varied depending on the combinations of the rice flour and cranberry pomace. The results revealed that up to 20% cranberry pomace could be added with 75-80% rice flour to develop high fiber and antioxidant with less carbohydrate cereal/snack products. The utilization of cranberry pomace combining with rice flour through extrusion process can provide a unique opportunity to generate healthier snacks and cereals that have higher fiber and antioxidant and low carbohydrate.


1997 ◽  
Vol 3 (6) ◽  
pp. 451-458 ◽  
Author(s):  
J. Ing-Jenq ◽  
M.E. Camire ◽  
A.A. Bushway

Mixtures of 0, 10, 20, 30 or 40% chicken thigh meat with potato flakes were adjusted to 21% mois ture content and extruded. A Brabender single screw extruder was used with zones 1 and 2 at 110 °C, zones 3 and 4 at 130 °C and zone 5 at 150 °C, feed rate 900 g/min and screw speed 60 rpm. Extrudates were then baked at 121 °C to a final moisture content of approximately 5%. As the meat content increased, fat and protein contents increased and shear force and expansion decreased. Air cell size and number decreased and extrudates appeared sponge-like at 0, 10 and 20% chicken and as a continuous protein-carbohydrate structure at 30 and 40% chicken. Total aerobes, yeasts and moulds were less than 11 cfu/g of extrudate.


Author(s):  
Dr. G. Kaemof

A mixture of polycarbonate (PC) and styrene-acrylonitrile-copolymer (SAN) represents a very good example for the efficiency of electron microscopic investigations concerning the determination of optimum production procedures for high grade product properties.The following parameters have been varied:components of charge (PC : SAN 50 : 50, 60 : 40, 70 : 30), kind of compounding machine (single screw extruder, twin screw extruder, discontinuous kneader), mass-temperature (lowest and highest possible temperature).The transmission electron microscopic investigations (TEM) were carried out on ultra thin sections, the PC-phase of which was selectively etched by triethylamine.The phase transition (matrix to disperse phase) does not occur - as might be expected - at a PC to SAN ratio of 50 : 50, but at a ratio of 65 : 35. Our results show that the matrix is preferably formed by the components with the lower melting viscosity (in this special case SAN), even at concentrations of less than 50 %.


Sign in / Sign up

Export Citation Format

Share Document