Investigation on the Physicochemical Properties of Pumpkin Flour (C ucurbita moschata ) Blend with Corn by Single-Screw Extruder

2014 ◽  
Vol 39 (6) ◽  
pp. 1342-1354 ◽  
Author(s):  
Fu-Liang Hong ◽  
Jinchyau Peng ◽  
Wai-Bun Lui ◽  
Hsiang-Wen Chiu
2022 ◽  
Vol 5 (1) ◽  
pp. 44
Author(s):  
Pranabendu Mitra ◽  
Sagar Khanvilkar ◽  
Sai Kumar Samudrala ◽  
Kaushal Sunil Shroff

The main objective of this study was to convert the cranberry pomace into value-added extruded cereals/snacks blending with rice flour using a single screw extruder based on the physicochemical properties of extrudates because utilization of the byproduct cranberry pomace would be necessary for the growth of cranberry juice processing industries and the extruded snacks/cereals with higher fiber and antioxidant and less carbohydrate would be required to fulfill the consumers’ demand. The six different formulations by blending 0, 5, 10, 15, 20 and 25% cranberry pomace with 100, 95, 90, 85, 80 and 75% of rice flour, respectively, were extruded using a single screw extruder. The temperature (150℃), screw speed (270 rpm), feed rate (20 Kg/hr) and feed moisture content (35%) were constant during extrusion. The physicochemical properties of the extrudates were characterized to determine the desirable formulations. The results indicated that radial expansion ratio (1.11-1.67), the solid density (0.71-0.76 g/mL), piece density (0.20-0.63 g/mL), porosity (14.49-72.38%), hardness (23-157.73 N), crispness (4.17-13.5), moisture content (3.22-4.39%), water activity (0.14-0.36) and the water solubility (7.07-30.80%) of rice flour and cranberry pomace blend extrudates were varied depending on the combinations of the rice flour and cranberry pomace. The results revealed that up to 20% cranberry pomace could be added with 75-80% rice flour to develop high fiber and antioxidant with less carbohydrate cereal/snack products. The utilization of cranberry pomace combining with rice flour through extrusion process can provide a unique opportunity to generate healthier snacks and cereals that have higher fiber and antioxidant and low carbohydrate.


2012 ◽  
Vol 550-553 ◽  
pp. 1513-1521
Author(s):  
Sirirat Thothong ◽  
Klanarong Sriroth ◽  
Rattana Tantatherdtam ◽  
Amnat Jarerat

To improve the miscibility of native rice starch granules and poly(butylene adipate-co-terephthalate)(PBAT), rice starch was hydrolyzed by a mixture of α-amylase and amyloglucosidase. The obtained porous rice granular starch was then mechanically blended with PBAT by single screw extruder. Many pits and holes on the surface of starch granules were observed by scanning electron microscopy (SEM). The rough surface of the rice starch granules improved the compatibility of the polymers in the blends, which consequently increased the tensile strength and the elongation at break. In addition, SEM also revealed that the porous granules were homogeneously distributed in the polymer matrix with no appearance of gaps.


2018 ◽  
Vol 204 ◽  
pp. 00008
Author(s):  
Heru Suryanto ◽  
Alfian Widi Rahmawan ◽  
Solichin ◽  
Sahana Rizki Tata ◽  
Uun Yanuhar

The development of materials engineering has led to many significant discoveries one of which is biocomposite with its diverse applications. The addition of reinforcing materials in biopolymers improves the composite properties. This study aimed at investigating the effect of adding nanoclay on the tensile strength, morphology, functional group, and structure of extruded biocomposites with cassava starch matrix. This experimental research involved different concentrations of nanoclay i.e. 0%, 2.5%, 5%, 7.5%. The extrusion process was performed using a single screw extruder at 120°C. The samples were characterized by tensile testing, XRD, and SEM. The biocomposite reinforced with 5% nanoclay had the highest tensile strength of 10.8 MPa. The highest diffraction peak at 2θ of 19.4° appeared in the sample added with 5% nanoclay. The addition of excessive amounts of nanoclay can hinder the formation of exfoliated structures.


2013 ◽  
Vol 30 (1) ◽  
pp. 223-242
Author(s):  
M. A. Morcos ◽  
B. M. A. Amer ◽  
H. K. El-Manawaty ◽  
M. M. H. Zakzouk

Sign in / Sign up

Export Citation Format

Share Document