scholarly journals Enhancement of Photoconductive Detector Based on Carbon Nanotubes Decorated with Silver Nanoparticles by Adding Conductive Polymer

2021 ◽  
Vol 19 (50) ◽  
pp. 84-93
Author(s):  
Taqwa Yousif ◽  
Asama Naje

In this work, wide band range photo detector operating in UV, Visible and IR was fabricated using carbon nanotubes (MWCNTs, SWCNTs) decorated with silver nanoparticles (Ag NPs). Silicon was used as a substrate to deposited CNTs/Ag NPs by the drop casting technique. Polyamide nylon polymer was used to coat CNTs/Ag NPs to enhance the photo-response of the detector. The electro-exploding wire technology was used to synthesize Ag NPs. Good dispersion of silver NPs achieved by a simple chemistry process on the surface of CNTs. The optical, structure and electrical characteristic of CNTs decorated with Ag NPs were characterized by X-Ray diffraction and Field Emission Scanning Electron Microscopy.  X-ray diffraction patterns of Ag NPs exhibited 2θ values (38.1°,44.3°) corresponding to the Ag nanocrystal, while the XRD pattern of MWCNTs and SWCNTs /Ag NPs peaks appeared at 2θ = 26.2° corresponding to the (002) and at 2theta=44° which corresponds with miller indices (100) for CNTs and (200) for Ag NPs. The optical properties measured by UV-Vis. Spectroscopy. Broad and strong surface plasmon resonance (SPR) peak was detected at 420 nm, for Ag NPs. The absorption of CNTs/Ag NPs increased significantly from UV to near IR region (300-1000 nm).  Ag NPs decorated CNTs without any impurities, according to field mission scanning electron microscopy examination, with typical particle sizes of (50-80nm) for Ag-NPs, 44nm for MWCNTs/Ag-NPs, and 30nm for SWCNTs/Ag NPs. ֹThe I-V characteristics at forward bias voltage (0.5-10) volt were studied. The figure of merits (responsivity, photocurrent gain, NEP and detectivity) after coating with polymer of the detector were measured in the dark and after illumination with UV LED (365 nm), Tungsten lamp (500-800 nm) and Laser diode (808 nm).

2021 ◽  
Vol 41 (03) ◽  
pp. 393-399
Author(s):  
Parwin Jalal Jalil

Spillage of protoscoleces within hydatid fluid during surgery for hydatid cyst is the main reason for its recurrence. Therefore, to inactivate the protoscoleces, various scolicidal substances have been tested. However, novel and more efficient agents are needed owing to several associated complications. This study focused on the effects of green synthetic Silver Nanoparticles (AgNPs) from Zizyphus spina- christi leaves on Echinococcus granulosus protoscoleces. Also, to evaluate the blood compatibility of Ag NPs. The Ag NPs were identified by ultraviolet-visible (UV-Visible) spectrophotometer, X-ray diffraction (XRD), Scanning electron microscopy imaging, and Energy-dispersive X-ray spectroscopy (EDX). Hydatid fluid was aspirated aseptically from cysts of infected sheep liver. The protoscoleces were exposed to Ag NPs at several concentrations. Also, scanning electron microscopy for ultrastructural changes and in vitro erythrocytes lysis was performed. The Ag NPs were spherical; the particles' size reached 50 nm, and presented a surface plasmon peak around 460 nm. The current study's findings indicated the powerful in vitro scolicidal efficacy of the green biosynthesized AgNPs. Several morphological alterations were observed on the protoscoleces by optical and scanning electron microscopy. Lysis of RBCs at different doses of Ag NPs was significantly (P≤0.05) less than the positive control value, thus proposing its biocompatibility. This work suggests that chemicals like polyphenols present in the extract of Z. spina- christi act as reducing and stabilizers agents to create Ag NPs Nevertheless, further investigations are needed to investigate the Ag NPs scolicidial effects in animal models.


2009 ◽  
Vol 620-622 ◽  
pp. 529-532
Author(s):  
Tie Kun Jia ◽  
Wei Min Wang ◽  
Zheng Yi Fu ◽  
Fei Huang ◽  
Hao Wang

La doped ZnO nanorods were synthesized via solvothermal technique using Zn(AC)2 and La(NO3)3 as starting materials. The products were characterized by X-ray diffraction (XRD), field scanning electron microscopy (FESEM) equipped with an energy dispersion X–ray (EDX) spectrometer, photoluminescence spectroscopy and UV-vis spectroscopy. The results of XRD in combination with EDS indicated that La was successful doped in ZnO. The obtained La doped ZnO sample exhibited nanorod like morphology and the diameter was about 30 nm. The photocatalytic property of La doped ZnO was evaluated by the variation of the concentration of RhB.


Author(s):  
Prakash Bhuyar ◽  
Mohd Hasbi Ab. Rahim ◽  
Sathyavathi Sundararaju ◽  
Rameshprabu Ramaraj ◽  
Gaanty Pragas Maniam ◽  
...  

Abstract Background Marine algae used as a food source for ocean life and range in color from red to green to brown grow along rocky shorelines around the world. The synthesis of silver nanoparticles by marine alga Padina sp. and its characterization were fulfilled by using UV-visible spectrophotometer, Fourier transform infrared spectroscopy, scanning electron microscopy and field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Results UV-visible absorption spectrum revealed that the formation of Ag nanoparticles was increased by the addition of marine algae and the spectral peak observed between a wavelength of ~ 420 nm and 445 nm. In addition, SEM and FESEM images examined the surface morphology and the size of the synthesized NPs was relatively uniform in size ~ 25–60 nm. Energy-dispersive X-ray spectroscopy analysis confirmed the purity of Ag NPs with atomic percentage of 48.34% Ag. The synthesized Ag NPs showed highly potent antibacterial activity. The Staphylococcus aureus and Pseudomonas aeruginosa were found to be more susceptible to silver nanoparticles by forming 15.17 ± 0.58 mm and 13.33 ± 0.76 mm of diameter of the inhibition zone, respectively. Conclusions The study suggested that marine alga Padina sp. could be an alternative source for the production of Ag nanoparticles and are efficient antimicrobial compounds against both gram-negative and gram-positive bacteria which can be a promising material against infectious bacteria.


2021 ◽  
Vol 03 (03) ◽  
pp. 87-91
Author(s):  
Kamal H LATEEF ◽  
Haleemah J. MOHAMMED ◽  
Abothur G. MOHAMMED

The adoption of nanotechnology to work within a field of sustainable energy within the preparation and manufacture of nano membrane ( CO3O4, TiO ) for fuel cell, which has prepared chemically. addition, using modern technology spraying ultrasound, to improve the structural, studied nano membrane have annealed in a vacuum and different temperature. studied optical properties membrane using UV- VIS spectroscopy, results of structural properties X-ray diffraction (XRD) showed that nanoparticles have polycrystalline also grain size decreased, composite nano membrane , Morphological studies using Scanning electron microscopy (SEM).


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Yessi Rahmayani ◽  
Zulhadjri Zulhadjri ◽  
Syukri Arief

Sintesis nanopartikel perak-TCP telah dilakukan pada penelitian ini. Nanopartikel perak dibuat dengan mereduksi larutan perak nitrat dengan menggunakan ekstrak daun alpukat sebagai bioreduktor. Tricalsium Phosphate (TCP) dicelupkan kedalam nanopartikel perak membentuk komposit perak-tricalcium phosphate. Hasil analisis UV-Vis menunjukkan pembentukan puncak serapan nanopartikel perak pada panjang 445-446 nm, yakni puncak yang khas dari nanopartikel perak yang disebabkan oleh adanya fenomena Surface Plasmon Resonance (SPR). Penelitian ini menghasilkan perak-TCP dengan ukuran nanopartikel. Sesuai  hasil X-Ray Diffraction (XRD) yang menunjukkan bahwa ukuran kristal TCP adalah 64 nm dan ukuran Kristal perak dalam komposit adalah 46 nm. Hasil Scanning Electron Microscopy (SEM) menunjukan partikel perak terdistribusi dipermukaan partikel TCP. Kata Kunci: Komposit perak-TCP, nanopartikel perak, Percea americana,  tricalcium phosphate.  The silver-TCP nanoparticle synthesis was carried out in this study. Silver nanoparticles are made by reducing silver nitrate solution using avocado leaf extract as a bioreactor. Tricalcium Phosphate (TCP) is dipped into silver nanoparticles to form a silver-tricalcium phosphate composite. The UV-Vis analysis shows the formation of silver nanoparticle absorption peaks at a length of 445-446 nm, which is a typical peak of silver nanoparticles caused by the Surface Plasmon Resonance (SPR) phenomenon. X-Ray Diffraction (XRD) shows that the TCP crystal size is 64 nm and the size of the Silver Crystal in the composite is 46 nm. The results of Scanning Electron Microscopy (SEM) show silver particles distributed on the surface of TCP particles Keywords: Percea americana, silver-TCP composite, silver nanoparticle, tricalcium phosphate.


2010 ◽  
Vol 636-637 ◽  
pp. 722-728
Author(s):  
K. Kordatos ◽  
A. Ntziouni ◽  
S. Trasobares ◽  
V. Kasselouri-Rigopoulou

The present work deals with the synthesis of carbon nanotube-zeolite composites using as method the catalytic liquid spray pyrolysis. The nanotubes were formed after pyrolysis of toluene on the surface of a zeolite of type ZSM-5, which was used as a catalytic substrate. ZSM-5 zeolite was synthesized using the autoclave process and full characterized. Prior to the pyrolyses, the catalytic substrates were produced by mixing a certain amount of zeolite with a solution of Fe(NO3)3•9H2O of specific concentration. The obtained materials from the spray pyrolysis were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetry-differential analysis (TG-DTA).


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
Howard S. Kaufman ◽  
Keith D. Lillemoe ◽  
John T. Mastovich ◽  
Henry A. Pitt

Gallstones contain precipitated cholesterol, calcium salts, and proteins. Calcium (Ca) bilirubinate, palmitate, phosphate, and carbonate occurring in gallstones have variable morphologies but characteristic windowless energy dispersive x-ray (EDX) spectra. Previous studies of gallstone microstructure and composition using scanning electron microscopy (SEM) with EDX have been limited to dehydrated samples. In this state, Ca bilirubinates appear as either glassy masses, which predominate in black pigment stones, or as clusters, which are found mostly in cholesterol gallstones. The three polymorphs of Ca carbonate, calcite, vaterite, and aragonite, have been identified in gallstones by x-ray diffraction, however; the morphologies of these crystals vary in the literature. The purpose of this experiment was to study fresh gallstones by environmental SEM (ESEM) to determine if dehydration affects gallstone Ca salt morphology.Gallstones and bile were obtained fresh at cholecystectomy from 6 patients. To prevent dehydration, stones were stored in bile at 37°C. All samples were studied within 4 days of procurement.


2016 ◽  
Vol 5 (1) ◽  
pp. 6
Author(s):  
Budi Setiawan ◽  
Erizal Zaini ◽  
Salman Umar

Sebuah penelitian tentang sistem dispersi padat dari asiklovir dengan poloxamer 188 telah dilakukan formulasi dengan pencampuran secara fisika dengan rasio 1 : 1, 1 : 3, 1 : 5 dan dispersi padat 1 : 1, 1 : 3, 1 : 5 dan penggilingan 1:1 sebagai pembanding. Dispersi padat dibuat menggunakan metode pencairan (fusi), yang digabung dengan poloxamer 188 pada hotplate kemudian asiklovir dimasukkan ke dalam hasil poloxamer 188 lalu di kocok hingga membentuk masa homogen. Semua formula yang terbentuk termasuk asiklovir poloxamer 188 murni dianalisis karakterisasinya dengan Differential Thermal Analysis (DTA), X-ray Diffraction, Scanning Electron Microscopy (SEM), dan Fourier Transform Infrared (FTIR), kemudian pengambilan dilakukan  (penentuan kadar) mengunakan spektrofotometer UV pada panjang gelombang 257,08 nm dan uji laju disolusi dengan aquadest bebas CO2 menggunakan metode dayung. Hasil pengambilan  (penentuan kadar) menunjukkan bahwa semua formula memenuhi persyaratan farmakope Amerika edisi 30 dan farmakope Indonesia edisi 4 yaitu 95-110%. Sedangkan hasil uji laju disolusi untuk campuran fisik 1: 1, dan dispersi padat 1: 1, dan penggilingan 1: 1 menunjukkan peningkatan yang nyata dibandingkan asiklovir murni. Hal ini juga dapat dilihat dari hasil perhitungan statistik  menggunakan analisis varian satu arah  SPSS 17.


Sign in / Sign up

Export Citation Format

Share Document