scholarly journals ALTERNATIF PENGGUNAAN SERATECENG GONDOK (EICHHORNIA CROSSIFES) SEBAGAI BAHAN TAMBAH PADACAMPURAN BETON DITINJAU TERHADAP KUAT TEKANNYA

UKaRsT ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Budi Tri Cahyono ◽  
Rio Rahma Dhana

ABSTRACTIn this increasingly advanced era, the more development is carried out, the increasing scale of development. It shows more and more concrete needs in the future. The purpose of this study is to find out and analyze the addition of water hyacinth fiber as a mixture on concrete. Data analysis methods begin with the investigation of cement material, fine aggregate, coarse aggregate, and water hyacinth material. Concrete is added with water hyacinth fiber with addition variations of 0%, 1%, 3% and 5%. Test object used in the form of a cylinder with size ø 15 cm x 30 cm. Concrete mix design uses ASTM method. In the process of making water hyacinth fiber begins with cutting the water hyacinth by 3-5 cm, then milling it into fiber. The next step is drying into the sun and then into the oven at 150ºC. From the results of the research conducted at the Civil Engineering Laboratory of Lamongan Islamic University, the results showed that there was a decrease in strength in the variation of the addition of water hyacinth 1% and 3% but experienced an increase in the 5% variation. It is known that the correlation of concrete compressive strength at 28 days is 0% at 86.27 Kg/cm2, 1% at 60.66 Kg/cm2, 3% at 55.27 Kg/cm2 and 5% at 57.97 Kg/cm2.Keywords: water hyacinth, concrete, compressive strength.

UKaRsT ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 14
Author(s):  
Kartisyah Wulandari ◽  
Dwi Kartikasari

Abstract In the modern building structures, the most important thing is concrete. To increase the concrete compressive strength, it is required added ingredients to the concrete mixture. In an effort to increase the concrete compressive strength, experiment is carried out by adding water hyacinth fiber and coarse aggregate of Mantup in concrete mixture. The purpose of this study is to know the characteristics of coarse aggregate of Mantup and to determine the effect of natural water hyacinth fiber addition from the using of coarse aggregate of Mantup towards the concrete compressive strength. This research method employs experimental method with mix design reference of SNI 03-2834-2000. To determine the effect of adding the natural water hyacinth fiber and coarse aggregate of Mantup, the experiment is done with the variation of 0%, 4%, 6%, and 8% by weight of the cement. The test object used is cylinders Ø15 cm × 30 cm. The number of samples made as many as 12 samples, consisting of 4 variations and for each variation is made 3 samples. After doing the immersion for 7 days, it is done the testing that can be conversed to 28 days. From the test, obtained the result that the compressive strength for the 0% fiber variation produces compressive strength of 94,36kg/cm², for 4% fiber variation produces compressive strength of 40.44 kg/cm², for 6% fiber variation produces compressive strength of 48.53 kg/cm², and for the 8% fiber variation produces compressive strength of 47.18 kg/cm². Keywords :Water Hyacinth, Coarse Aggregate of Mantup, Compressive Strength of Concret 


2021 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Agung Prayogi

Abstract Concrete is the most widely used material throughout the world and innovations continue to be carried out to produce efficient development. Shell charcoal ash and rice husk ash are industrial by-products which have the potential to replace sand for concrete mix, especially in Indragiri Hilir. The research with the title "Effect of Mixture of Rice Husk Ash and Shell Ash Ashes as Substitute for Some Fine Aggregates Against Concrete Compressive Strength" aims to prove the effect of a mixture of shell charcoal ash and husk ash to replace some of the sand to produce maximum compressive strength. Concrete is a mixture of Portland cement, fine aggregate, coarse aggregate, and water. This research uses 5 variations of the mixture to the weight of sand, BSA 0 without a substitute mixture, BSA 1 with a mixture of 5% husk ash and 10% shell charcoal, BSA 2 with a mixture of 5% husk ash and 15% charcoal ash, BSA 3 with a mixture of 5% husk ash and 18% charcoal, BSA 4 with a mixture of 10% husk and 10% charcoal, and BSA 5 with a mixture of 13% husk ash and 10% charcoal ash. SNI method is used for the Job Mix Formula (JMF) mixture in this research. The results of the average compressive strength of concrete at 28 days for JMF of 21.05 MPa, BSA 1 of 23.68 MPa, BSA 2 of 22.23 MPa, BSA 3 of 14.39 MPa, BSA 4 of 13.34 MPa , and BSA 5 of 20.14 MPa. The conclusion drawn from the results of the BSA 1 research with a mixture of 5% husk ash and 15% charcoal ash produced the highest average compressive strength of 23.68 MPa. Abstrak Beton merupakan material paling banyak digunakan diseluruh dunia dan terus dilakukan inovasi untuk menghasilkan pembangunan yang efisien. Abu arang tempurung dan abu sekam padi merupakan hasil sampingan industri yang berpotensi sebagai pengganti pasir untuk campuran beton, khususnya di Indragiri Hilir. Penelitian dengan judul “Pengaruh Campuran Abu Sekam Padi dan Abu Arang Tempurung Sebagai Pengganti Sebagian Agregat Halus Terhadap Kuat Tekan Beton” ini bertujuan membuktikan adanya pengaruh campuran abu arang tempurung dan abu sekam untuk mengganti sebagian pasir hingga menghasilkan kuat tekan maksimum. Beton adalah campuran antara semen portland, agregat halus, agregat kasar, dan air. Penelitian ini menggunakan 5 variasi campuran terhadap berat pasir, BSA 0 tanpa campuran pengganti, BSA 1 dengan campuran 5 % abu sekam dan 10% arang tempurung, BSA 2 dengan campuran 5% abu sekam dan 15% abu arang, BSA 3 dengan campuran 5% abu sekam dan 18% arang, BSA 4 dengan campuran 10% sekam dan 10% arang, dan BSA 5 dengan campuran 13% abu sekam dan 10% abu arang. Metode SNI digunakan untuk campuran Job Mix Formula (JMF)  pada penelitian ini. Hasil rata-rata kuat tekan beton pada umur 28 hari untuk JMF sebesar 21,05 MPa, BSA 1 sebesar 23,68 MPa, BSA 2 sebesar 22,23 MPa, BSA 3 sebesar 14,39 MPa, BSA 4 sebesar 13,34 MPa, dan BSA 5 Sebesar 20,14 MPa. Ditarik kesimpulan dari hasil penelitian BSA 1 dengan campuran 5% abu sekam dan 15% abu arang menghasilkan rata-rata kuat tekan tertinggi yaitu sebesar 23,68 MPa.  


Author(s):  
Agung Sumarno ◽  
Syafwandi Syafwandi ◽  
Fatmawati Adelia Rizky ◽  
Sumiyati Sumiyati

Concrete is a mixture of Portland cement or other hydraulic cement, fine aggregate, coarse aggregate, and water, with or without additives (admixture). The naphthalene superplasticizer used comes from distillation of coal tar and a little from the rest of petroleum, but there is also camphor naphthalene. Where camphor grains contain 250-500 mg of naphthalene. Naphthalene is mostly produced from coal tar distillation, and a little from the rest of the fractionation of petroleum, by the molecular formula (C10H8) and in the form of two unified benzene rings. This compound is volatile, volatile even in the form of solids. The vapor produced is flammable. The purpose of this study was to determine the effect of the use of naphthalene from coal tar waste with camphor naphthalene as concrete admixture, and determine the effect of naphthalene from coal tar waste with camphor naphthalene on concrete toughness, density, water absorption, of concrete compressive strength. It is expected that the use of naphthalene can reduce the use of cement, and reduce water use. But it does not reduce the strength of the concrete so as to reduce costs in making concrete. The variations in the use of camphor naphthalene and coal tar naphthalene are 20%, 30%, 40%.


Author(s):  
Nuttawut Intaboot ◽  
Kriangkrai Chartboot

This paper aimed to assess the potential of using limestone dust to replace sand at levels of 0, 20, 40, 60, 80 and 100% by weight. Concrete mix design for cement : fine aggregate : coarse aggregate was 1: 2 : 4 and 0.40, 0.50, 0.60 water-to-cement ratios were used. The study started by testing the basic properties of the material. The compressive strength test was done with curing for 7, 14, 21 and 28 days and modulus of elasticity of concrete at 28 days, after which the microstructural properties of concrete modified with limestone dust were investigated. The study found that the concrete had better workability when increasing the limestone dust content. The incorporation of 40% limestone dust at 0.50 water-to-cement ratios was found to improve the compressive strength of the concrete and resulted in the maximum compressive strength. However, high levels of replacement lead to porous microstructures. Moreover, the use of limestone dust in concrete production tends to be more cost-effective. Therefore, the results of this research seemingly provide confirmation and support for the utilization of these waste materials by reducing the use of natural resources. Further, it is a goal of local governments to help promote the value of limestone dust for future use.


2020 ◽  
Vol 28 (1) ◽  
pp. 106
Author(s):  
Rahelina Ginting ◽  
Winarko Malau

Concrete work is widely used in construction projects now. To get a good quality concrete depends very much on the quality of the constituent materials, namely cement, water, fine aggregate, coarse aggregate, and also the process of working or stirring. In this research, 27 MPa concrete compressive strength will be investigated with various stirring methods (Manual Mix, Molen Mix and Ready Mix). These three methods of stirring certainly have their respective uses in the process, usually Manual, Molen and Ready Mix are used depending on the conditions of the project being worked on. From this test, results are obtained by means of manual stirring, Molen stirring and Ready Mix with compressive strength average: (266,467 kg / cm2) (278,368 kg / cm2) (284,595 kg / cm2). The results of the study stated that the research carried out fulfilled the estimation target 'c = 27 Mpa.


2019 ◽  
Vol 6 (2) ◽  
pp. 145
Author(s):  
Budiman Budiman

Concrete waste from building construction can cause problems for the environment [1]. The use of fine aggregates from concrete waste can be a solution. The purpose of this study is to determine the value of aggregate characteristics and the value of concrete compressive strength from the utilization of concrete waste as substitution fine aggregate use the DOE (department of environment) method and referring to standards SNI. This study used 50% and 60% waste mortal substitution on sand. The results showed that the characteristics of fine aggregate and coarse aggregate met the characteristic requirements for fineness modulus sand of 2.65 (Zone 2) while the aggregate was roughly 6.44 (Zone 3). The value of compressive strength with 50% and 60% concrete waste substitution each obtained the value of characteristic compressive strength of 57.24 kg / cm² and 101.03 kg / cm². The value of using mortar waste as fine aggregate substitution gives a positive value to the quality of concrete. This is evidenced increase in the value of 14.89% in concrete waste substitution 60%.


Author(s):  
H. Haris

In the current era of globalization, the development of concrete in the construction sector is very rapid, be it housing, offices, bridges, roads, dams, ports, and others. That is inseparable from the use of concrete as a part of building construction. The use of coarse aggregate for concrete mixes, namely natural stone, is a non-renewable natural resource. Therefore an alternative is needed as a substitute. One of the natural resources that can be renewed is hazelnut skin. Candlenut is a traditional plant that has various benefits, one of which is a candlenut shell. In this study, the materials used for standard concrete mixtures consist of water, cement, fine aggregate, and coarse aggregate. The water used for mixing the concrete is taken from the PDAM channel. The results showed that the effect of candlenut shells used as a substitute for some coarse aggregate decreased compressive strength results from the results of standard concrete compressive strength. The results obtained by the value of standard concrete compressive strength at 28 days of concrete were 27.19Mpa for concrete using Candlenut shells of 20% produce a compressive strength value of 17.33 Mpa at 28 days of concrete. 35% produce a concrete compressive strength value of 16.04 Mpa, while 50% produce a concrete compressive strength value of 15.17 Mpa. Thus the research shows that more and more candlenut shells are being used as a substitute for coarse aggregate in the concrete mixture.


2018 ◽  
Vol 3 (1) ◽  
pp. 55
Author(s):  
Suhendra Suhendra

Aggregate quality is very influential on the strength of the resulting concrete. Both coarse and fine aggregates have various characteristics identified from laboratory test results. This study aims to examine the use of various aggregates for a quality of concrete. The coarse aggregate and the fine aggregate used are obtained from the nearest location to the work to be performed. The quality of the concrete reviewed is K-125, K-175 and K-225. The coarse aggregates used are 1-2 size (in cm), 2-3 size (in cm) crushed aggregate and coral. The fine aggregates used for each of the coarse aggregates are also different. The results showed that the coral aggregate did not meet the gradations of concrete aggregate. While the fine aggregate does not meet the gradation of concrete aggregate for the three types used. The concrete compressive strength test results show the use of coarse aggregates of 2-3 size of crushed and coarse aggregate of corals giving the average compressive strength value required for all planned concrete strength. While concrete using coarse aggregates of rocks of size 1-2 only meet the specified compressive strength, but does not meet the required compressive strength.Key words: Aggregates, concrete, compressive strength


Author(s):  
Sumarno Agung ◽  
Syafwandi Syafwandi ◽  
Adelia Rizky Fatmawati ◽  
Sumiyati Sumiyati

Concrete is a mixture of Portland cement or other hydraulic cement, fine aggregate, coarse aggregate, and water, with or without additives (admixture). The naphthalene superplasticizer used comes from the distillation of coal tar and a little from the rest of petroleum, but there is also camphor naphthalene. Where camphor grains contain 250-500 mg of naphthalene. Naphthalene is mostly produced from coal tar distillation, and a little from the rest of the fractionation of petroleum, by the molecular formula (C10H8) and in the form of two unified benzene rings. This compound is volatile, volatile even in the form of solids. The vapor produced is flammable. The purpose of this study was to determine the effect of the use of naphthalene from coal tar waste with camphor naphthalene as concrete admixture, and determine the effect of naphthalene from coal tar waste with camphor naphthalene on concrete toughness, density, water absorption, of concrete compressive strength. It is expected that the use of naphthalene can reduce the use of cement, and reduce water use. But it does not reduce the strength of the concrete so as to reduce costs in making concrete. The variations in the use of camphor naphthalene and coal tar naphthalene are 20%, 30%, 40%.


UKaRsT ◽  
2018 ◽  
Vol 2 (1) ◽  
pp. 10
Author(s):  
Nur Affandy ◽  
Zulkifli Lubis

This research will be conducted in accordance with Indonesian Standard SK SNI and foreign standard ASTM. The test object consists of a cylindrical test with the diameter of 15 cm and a height of 30 cm, and it is developed to 4 mixture variations with the amount of 2%, 4%, 6%, 8%, of total cement. The mechanical properties of concrete is being tested include concrete compressive strength. Itis tested at the age of 7 days, and then converted at 28 days, using test objects mixed with different fiber variations. The results of the test are: compressive strength test with 2% variation is 7,54MPa, compressive strength testwith 4% variation is 6,74 Mpa, compressive strength with 6% variation is 4,58 Mpa, compressive strength with 8% variation is 3.63 MPa. Maximum concrete compressive strength occurs in 2% fiber  mixture, while the minimum concrete compressive strength occurs in 8%. From these results, it can be concluded that the addition of water hyacinth fiber to the mixture for low quality concrete has not been able to increase its compressive strength.Keywords: Fiber, Water Hyacinth, Concrete Compressive Strength.


Sign in / Sign up

Export Citation Format

Share Document