scholarly journals STUDI PENCAMPURAN SERAT ECENG GONDOK PADA CAMPURAN BETON DENGAN PENGGUNAAN AGREGAT KASAR DARI KECAMATAN MANTUP

UKaRsT ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 14
Author(s):  
Kartisyah Wulandari ◽  
Dwi Kartikasari

Abstract In the modern building structures, the most important thing is concrete. To increase the concrete compressive strength, it is required added ingredients to the concrete mixture. In an effort to increase the concrete compressive strength, experiment is carried out by adding water hyacinth fiber and coarse aggregate of Mantup in concrete mixture. The purpose of this study is to know the characteristics of coarse aggregate of Mantup and to determine the effect of natural water hyacinth fiber addition from the using of coarse aggregate of Mantup towards the concrete compressive strength. This research method employs experimental method with mix design reference of SNI 03-2834-2000. To determine the effect of adding the natural water hyacinth fiber and coarse aggregate of Mantup, the experiment is done with the variation of 0%, 4%, 6%, and 8% by weight of the cement. The test object used is cylinders Ø15 cm × 30 cm. The number of samples made as many as 12 samples, consisting of 4 variations and for each variation is made 3 samples. After doing the immersion for 7 days, it is done the testing that can be conversed to 28 days. From the test, obtained the result that the compressive strength for the 0% fiber variation produces compressive strength of 94,36kg/cm², for 4% fiber variation produces compressive strength of 40.44 kg/cm², for 6% fiber variation produces compressive strength of 48.53 kg/cm², and for the 8% fiber variation produces compressive strength of 47.18 kg/cm². Keywords :Water Hyacinth, Coarse Aggregate of Mantup, Compressive Strength of Concret 

UKaRsT ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Budi Tri Cahyono ◽  
Rio Rahma Dhana

ABSTRACTIn this increasingly advanced era, the more development is carried out, the increasing scale of development. It shows more and more concrete needs in the future. The purpose of this study is to find out and analyze the addition of water hyacinth fiber as a mixture on concrete. Data analysis methods begin with the investigation of cement material, fine aggregate, coarse aggregate, and water hyacinth material. Concrete is added with water hyacinth fiber with addition variations of 0%, 1%, 3% and 5%. Test object used in the form of a cylinder with size ø 15 cm x 30 cm. Concrete mix design uses ASTM method. In the process of making water hyacinth fiber begins with cutting the water hyacinth by 3-5 cm, then milling it into fiber. The next step is drying into the sun and then into the oven at 150ºC. From the results of the research conducted at the Civil Engineering Laboratory of Lamongan Islamic University, the results showed that there was a decrease in strength in the variation of the addition of water hyacinth 1% and 3% but experienced an increase in the 5% variation. It is known that the correlation of concrete compressive strength at 28 days is 0% at 86.27 Kg/cm2, 1% at 60.66 Kg/cm2, 3% at 55.27 Kg/cm2 and 5% at 57.97 Kg/cm2.Keywords: water hyacinth, concrete, compressive strength.


2018 ◽  
Author(s):  
Erniati Bachtiar

Concrete construction technology is directed to be sustainable and ecofriendly. The waste of the candlenut shell as a substitute for the coarse aggregate of concrete mixture is known that the candlenut shell has a hard texture so it may be used as a substitute for coarse aggregates in concrete. The purpose of the research was to determine the effect of Candlenut shell as a substitute of coarse aggregate on physical properties (slump test, bleeding, segregation, volume weight) and mechanical properties (compressive strength and tensile strength) of concrete using Candlenut shell as replacement material of the coarse aggregate. The variation of the research was percentage of the Candlenut shell in the concrete mixture, that was 0%, 25%, 50%, 75% and 100% to the coarse aggregate volume in the concrete mixture. Number of specimens in reseach was each 5 pieces each variation. Testing of mechanical properties of concrete (compressive strength and tensile strength) was performed at 28 days. Testing of the concrete for compressive strength test and tensile strength on age 28 days. Concrete using candlenut shell as a substitute of coarse aggregates has decreased compressive strength respectively 11.72 MPa (37.71%) for 25% candlenut shell; 15.54 MPa (50.00%) for 50% candlenut shell; 18.35 MPa (59.02%) for 75% candlenut shell; And 18,85 MPa (60,66%) for 100% candlenut shell from of the 0% candlenut shell with compressive strength of 31.08 Mpa. Concrete using for 25% candlenut shell as a substitute for coarse aggregates decreased tensile strength respectively of 0.95 MPa (28.70%) for 25% candlenut shell; 1.21 MPa (36.56%) for 50% candlenut shell; 1.27 MPa (38.37%) for 75% candlenut shell; And 1.40 MPa (42.30%) for 100% candlenut shell from of the 0% candlenut shell with the tensile strength of BN of 3.31 MPa. The decrease in the value of compressive strength and tensile strength is strongly influenced by the increasing percentage of Candlenut shells on concrete


2018 ◽  
Author(s):  
Erniati Bachtiar

Concrete construction technology is directed to be sustainable and ecofriendly. The waste of the candlenut shell as a substitute for the coarse aggregate of concrete mixture is known that the candlenut shell has a hard texture so it may be used as a substitute for coarse aggregates in concrete. The purpose of the research was to determine the effect of Candlenut shell as a substitute of coarse aggregate on physical properties (slump test, bleeding, segregation, volume weight) and mechanical properties (compressive strength and tensile strength) of concrete using Candlenut shell as replacement material of the coarse aggregate. The variation of the research was percentage of the Candlenut shell in the concrete mixture, that was 0%, 25%, 50%, 75% and 100% to the coarse aggregate volume in the concrete mixture. Number of specimens in reseach was each 5 pieces each variation. Testing of mechanical properties of concrete (compressive strength and tensile strength) was performed at 28 days. Testing of the concrete for compressive strength test and tensile strength on age 28 days. Concrete using candlenut shell as a substitute of coarse aggregates has decreased compressive strength respectively 11.72 MPa (37.71%) for 25% candlenut shell; 15.54 MPa (50.00%) for 50% candlenut shell; 18.35 MPa (59.02%) for 75% candlenut shell; And 18,85 MPa (60,66%) for 100% candlenut shell from of the 0% candlenut shell with compressive strength of 31.08 Mpa. Concrete using for 25% candlenut shell as a substitute for coarse aggregates decreased tensile strength respectively of 0.95 MPa (28.70%) for 25% candlenut shell; 1.21 MPa (36.56%) for 50% candlenut shell; 1.27 MPa (38.37%) for 75% candlenut shell; And 1.40 MPa (42.30%) for 100% candlenut shell from of the 0% candlenut shell with the tensile strength of BN of 3.31 MPa. The decrease in the value of compressive strength and tensile strength is strongly influenced by the increasing percentage of Candlenut shells on concrete.


2019 ◽  
Vol 5 (2) ◽  
pp. 107
Author(s):  
Decka Chaniago Sukanli ◽  
Priyanto Saelan

ABSTRAKDalam campuran beton, agregat kasar memiliki 70% sampai 80% pengaruh terhadap kuat tekan beton. Agregat kasar memiliki bentuk yang berbeda seperti membulat, pipih, dan memanjang tergantung pada sumbernya. Dalam penelitian ini, dilakukan penyelidikan pada kadar maksimum bentuk pipih dan memanjang agregat kasar dalam campuran beton. Pada penelitian kadar bentuk pipih dan memanjang agregat kasar ini menggunakan benda uji silinder dengan ukuran diameter 10 cm dan tinggi 20 cm. Pengujian dilakukan dengan uji slump dan uji kuat tekan beton yang mengacu pada SNI. Slump rencana yang digunakan yaitu (30-60) mm dan (60-180) mm dengan kuat tekan beton rencana yaitu 30 MPa usia 28 hari. Hasil pengujian ini dapat diketahui bahwa kadar pipih dan memanjang agregat kasar melebihi 20% tidak berpengaruh terhadap kuat tekan beton selama kadar pipih dan memanjang agregat kasar tidak melebihi 45% dari total agregat batu pecah.Kata kunci: bentuk pipih dan memanjang, agregat kasar, kuat tekan beton, uji slump ABSTRACTIn concrete mixture, coarse aggregate has 70% to 80% influence on concrete compressive strength. The coarse aggregate have different shape like rounded, angular, flaky and elongated depending on the source. In this study, we investigated the maximum level of flat and elongated coarse aggregate in concrete mixture. In the study of the level of flat and elongated forms coarse aggregates using cylindrical specimen with a diameter of 10 cm and a height of 20 cm. Testing was conducted with slump and concrete compressive strength test which refers to SNI. The slump plan used is (30-60) mm and (60-180) mm with a 30 MPa concrete compressive strength of 28 days. The results of this test can be seen that the flat and elongated of coarse aggregates exceeding 20% does not effect compressive strength of the concrete as long as the flat and elongated of coarse aggregates not exceed at 45% of the total aggregates.Keywords: flat and elongated shape, coarse aggregates, compressive strength, slump test


UKaRsT ◽  
2018 ◽  
Vol 2 (1) ◽  
pp. 10
Author(s):  
Nur Affandy ◽  
Zulkifli Lubis

This research will be conducted in accordance with Indonesian Standard SK SNI and foreign standard ASTM. The test object consists of a cylindrical test with the diameter of 15 cm and a height of 30 cm, and it is developed to 4 mixture variations with the amount of 2%, 4%, 6%, 8%, of total cement. The mechanical properties of concrete is being tested include concrete compressive strength. Itis tested at the age of 7 days, and then converted at 28 days, using test objects mixed with different fiber variations. The results of the test are: compressive strength test with 2% variation is 7,54MPa, compressive strength testwith 4% variation is 6,74 Mpa, compressive strength with 6% variation is 4,58 Mpa, compressive strength with 8% variation is 3.63 MPa. Maximum concrete compressive strength occurs in 2% fiber  mixture, while the minimum concrete compressive strength occurs in 8%. From these results, it can be concluded that the addition of water hyacinth fiber to the mixture for low quality concrete has not been able to increase its compressive strength.Keywords: Fiber, Water Hyacinth, Concrete Compressive Strength.


2021 ◽  
Vol 11 (9) ◽  
pp. 3866
Author(s):  
Jun-Ryeol Park ◽  
Hye-Jin Lee ◽  
Keun-Hyeok Yang ◽  
Jung-Keun Kook ◽  
Sanghee Kim

This study aims to predict the compressive strength of concrete using a machine-learning algorithm with linear regression analysis and to evaluate its accuracy. The open-source software library TensorFlow was used to develop the machine-learning algorithm. In the machine-earning algorithm, a total of seven variables were set: water, cement, fly ash, blast furnace slag, sand, coarse aggregate, and coarse aggregate size. A total of 4297 concrete mixtures with measured compressive strengths were employed to train and testing the machine-learning algorithm. Of these, 70% were used for training, and 30% were utilized for verification. For verification, the research was conducted by classifying the mixtures into three cases: the case where the machine-learning algorithm was trained using all the data (Case-1), the case where the machine-learning algorithm was trained while maintaining the same number of training dataset for each strength range (Case-2), and the case where the machine-learning algorithm was trained after making the subcase of each strength range (Case-3). The results indicated that the error percentages of Case-1 and Case-2 did not differ significantly. The error percentage of Case-3 was far smaller than those of Case-1 and Case-2. Therefore, it was concluded that the range of training dataset of the concrete compressive strength is as important as the amount of training dataset for accurately predicting the concrete compressive strength using the machine-learning algorithm.


Jurnal Tekno ◽  
2021 ◽  
Vol 18 (2) ◽  
pp. 11-20
Author(s):  
Ahmad Junaidi ◽  
R Dewo Hiraliyamaesa Hariyanto

Perumpung (Eulalia japonica) is a wild plant that usually grows on the banks of river. The locals consider this plant as a waste/pest, but the authors are interested in researching perumpung because they are similar to bamboo, sugarcane and other fibrous plants. In this study, the authors aims to compare the compressive strength of normal concrete with the compressive strength of concrete added with Perumpung ash at 28-days-old K-300. The study used a cube-shaped test object (15 x 15 x 15 cm) with 6 samples for each condition. The total number of test objects is 48, which consists of 8 conditions, namely normal conditions and 5%, 7.5%, 10%, 12.5%, 15%, 17.5% and 20% addition of perumpung ash by cement weight. The results obtained that the compressive strength of 28-days-old concrete under normal conditions was 316,060 kg/cm2 and the addition of 5% ash was 331.583 kg/cm2, 7.5% was 337.181 kg/cm2, 10% was 341.813 kg/cm2, 12 ,5% is 347,045 kg/cm2, 15% is 353,889 kg/cm2, 17.5% is 311,160 kg/cm2 and 20% is 298.44 kg/cm2. From the results above it can be concluded that the addition of 15% Perumpung Ash to the concrete mixture increases the maximum characteristic concrete compressive strength by 353.889 kg/cm2.


2019 ◽  
Vol 3 (2) ◽  
pp. 81-89
Author(s):  
Angga Pirman Firdaus ◽  
Jonbi

Indonesia ranks second in the world's largest plastic waste producer after China. Each year, Indonesia can contributeup to 187.2 million tons of plastic waste, while China reaches 262.9 million tons of plastic waste. Based on the data, one way to utilize plastic waste by using plastic waste as a mixture of concrete, where the plastic used is polypropylene (PP) plastic with different percentage of concrete mixture, the test includes compressive strength test and tensile concrete. The results of concrete compressive strength testing with polypropylene (PP) plastic waste mixture of 5%, 10% and 15% at age 28 in aggregate aggregate mixture decreased by 5.15%, 6.89% and 13.53%. As for the result of concrete tensile strength test with polypropylene (PP) plastic waste mixture of 5%, 10% and 15% at age 28 in crude aggregate mixture decreased 17,61%, 24,13% dan 23,24%.


UKaRsT ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 21
Author(s):  
Muttaqin Fauzin Istighfarin ◽  
Rasio Hepiyanto

Abstract Paving block is one of the products of building materials used as the top layer of the street structure, compared to other pavements like cast concrete and asphalt, paving block has been widely chosen especially to the streets used to traversed by low-speeed vehicles. This study aims to know and analyze how strong the influence of additional water hyacinth fiber to the compressive strength of K-200 paving block. Method used in this study is experimental method, with the comparison of mix design reffering to the comparison of concrete quality mixture K-200 (SNI 7394-2008). The result is K-200 paving block decreases its compressive strength after given the mixture of water hyacinth fiber. The precentage of the lowest decrease is in the 0,2 mixture of 55,69% and the highest decrease is in the mixture of 0,8 with the decline presentage of of 82,39%. The score of compressive strength for each test object is: Normal of 209,53 kg/cm², 2% of 92,86 kg/cm², 4% of 84,53 kg/cm², 6% of 58,33 kg/cm², and 8% of 36,90 kg/cm². The relationship of non-linear regression can be seen in R² = 1 on  polinomial orde 4. Paving block with with code objects test “Normal” classified as in the quality of paving block B with compressive strength of 209,53 kg/cm² (17,03 Mpa), while for paving block with extra water hyacinth fiber, it is below the compressive strength standard according to SNI 03-0691-1996. Keywords: Rigid Pavement, Paving Block, Water Hyacinth, Compressive Strength.


2020 ◽  
Vol 20 (01) ◽  
pp. 61-68
Author(s):  
Siska Apriwelni ◽  
Nugraha Bintang Wirawan

(ID) Penelitian ini membahas pengaruh kuat tekan beton mutu tinggi dengan memanfaatkan limbah fly ash dan limbah kaca. Tujuan dari penelitian ini untuk mengetahui kuat tekan beton pada masing-masing variasi, mengetahui persentase campuran beton untuk menghasilkan kuat tekan maksimum, dan mengetahui apakah fly ash dan serbuk kaca efektif digunakan secara bersamaan sebagai bahan campuran beton. Komposisi fly ash terdiri dari 5 variasi yaitu persentase 0%, 5%, 10%, 15%, dan 20%. Sedangkan untuk komposisi serbuk kaca terdiri dari 2 variasi yaitu persentase 5% dan 10%. Jumlah benda uji 30 buah silinder berukuran diameter 15 cm dan tinggi 30 cm dengan 3 benda uji untuk setiap variasi. Perencanaan campuran beton menggunakan SNI 03-2834-2000 yang dimodifikasi. Pengujian kuat tekan diuji pada umur beton 28 hari. Beton dengan fly ash 0% dan serbuk kaca 10% memiliki kuat tekan paling tinggi dibandingkan dengan beton dengan tambahan fly ash, yaitu 46,77%. Selain itu, dapat disimpulkan bahwa semakin bertambahnya jumlah persentase serbuk kaca yang digunakan menunjukkan bahwa kuat tekan beton semakin bertambah juga. Penambahan fly ash pada campuran beton mempengaruhi kuat tekan beton yang dihasilkan. Pada variasi fly ash 0% memiliki kuat tekan tertinggi baik pada saat campuran serbuk kaca 5%dan 10%. Variasi fly ash 15% adalah kondisi optimum campuran beton dengan kuat tekan beton yaitu 43,31 Mpa. Kedua limbah ini dapat dikombinasikan dan dimanfaatkan dengan baik dan digunakan dalam pembuatan beton mutu tinggi. (EN) This study discusses the effect of high quality concrete by utilizing fly ash and glass waste. The purpose of this study is to determine the compressive strength of concrete in each variation, to determine the contribution of concrete to produce compressive strength, and to find out that fly ash and glass powder are effectively used in full as a concrete admixture. Fly ash composition consists of 5 variations, namely the percentage of 0%, 5%, 10%, 15%, and 20%. While for the composition of glass powder consists of 2 variations, namely the percentage of 5% and 10%. The number of specimens is 30 cylinders with a diameter of 15 cm and a height of 30 cm with 3 specimens for each variation. Concrete mixture planning using SNI 03-2834-2000 was developed. Compressive strength testing on concrete age 28 days. Concrete with 0% fly ash and 10% glass powder have the highest compressive strength compared to concrete with additional fly ash, which is 46.77%. In addition, it can increase the amount of glass powder addition that is used to show the concrete compressive strength is increasing as well. The addition of fly ash in the concrete mixture has an effect on the compressive strength of the concrete produced. In the variation of 0% fly ash has the highest compressive strength when the glass powder mixture of 5% and 10%. The 15% fly ash variation is the optimal concrete mixture with compressive strength of 43.31 MPa. These two wastes can be combined and utilized properly and are used in making high quality concrete.  


Sign in / Sign up

Export Citation Format

Share Document