scholarly journals PENELITIAN CAMPURAN ASPAL BETON DENGAN MENGGUNAKAN FILLER BUNGA PINUS

UKaRsT ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 37 ◽  
Author(s):  
April Gunarto

AbstractThis study aims to determine the mixture of Pine Flowers using the Marshall method, and to determine the optimum asphalt content produced in concrete asphalt mixture with Pine Flower fillers, reviewed from the Marshall reserves, flow, VIM (voids In Mix), VMA (Void In Mineral ) Aggregate), VFB (Void Filled Bitumen), and Marshall quotient (MQ).The concrete asphalt mixture method in this study used AC 60/70 oil asphalt. This study consisted of 5 samples, each using different asphalt levels, namely: 5%, 5.5%, 6%, 6.5%, 7%. With each sample consisting of 3 variants of sample specimens. This research was conducted at the Technical Laboratory, the university attended. The stages of the study included coarse aggregate of the solid rock held by filter no. 8 (2.36mm), fine aggregate with brantas river sand passes the no. 8 (2.36mm), and fillers use pine ashes by passing filter no. 200 (0.075mm).The results of this study about Marshall characteristics obtained Optimal Asphalt levels of 6.5% with a mean Stability value of 1417, a mean Flow value of 3.6 mm, a mean value of VIM (voids In Mix) 4.11%, a mean value of VMA (Void In Mineral Aggregate 16.69%, VFB (Void Filled Bitumen) mean value 73.57%, and Marshall quotient (MQ) mean value 314 kg / mm. Keywords: Concrete Asphalt, Marshall Method, Pine Flowers

UKaRsT ◽  
2017 ◽  
Vol 1 (1) ◽  
pp. 89
Author(s):  
April Gunarto

AbstractThis study aims to determine the mixture of Pine Flowers using the Marshall method, and to determine the optimum asphalt content produced in concrete asphalt mixture with Pine Flower fillers, reviewed from the Marshall reserves, flow, VIM (voids In Mix), VMA (Void In Mineral ) Aggregate), VFB (Void Filled Bitumen), and Marshall quotient (MQ).The concrete asphalt mixture method in this study used AC 60/70 oil asphalt. This study consisted of 5 samples, each using different asphalt levels, namely: 5%, 5.5%, 6%, 6.5%, 7%. With each sample consisting of 3 variants of sample specimens. This research was conducted at the Technical Laboratory, the university attended. The stages of the study included coarse aggregate of the solid rock held by filter no. 8 (2.36mm), fine aggregate with brantas river sand passes the no. 8 (2.36mm), and fillers use pine ashes by passing filter no. 200 (0.075mm).The results of this study about Marshall characteristics obtained Optimal Asphalt levels of 6.5% with a mean Stability value of 1417, a mean Flow value of 3.6 mm, a mean value of VIM (voids In Mix) 4.11%, a mean value of VMA (Void In Mineral Aggregate 16.69%, VFB (Void Filled Bitumen) mean value 73.57%, and Marshall quotient (MQ) mean value 314 kg / mm. Keywords: Concrete Asphalt, Marshall Method, Pine Flowers


2021 ◽  
Vol 3 (3) ◽  
pp. 421-430
Author(s):  
Marine Mariel Pongturunan ◽  
Mary Selintung ◽  
Alpius

The rapid development of road infrastructure increases the need for materials to be used, including the use of aggregates. This study aims to examine the use of aggregate from the Sewan River in Sarmi Regency as an asphalt mixture. In this study by conducting several tests such as checking the characteristics of course (stone), fine (sand), filler and asphalt characteristics. After that, a mixture of asphalt composition (AC-WC) was made and then the Marshall test was carried out to obtain the properties of the mixture. The results of testing the composition of the AC-WC mixture obtained the composition of the mixture for the optimum asphalt content of 7.50%, coarse aggregate 36.75%, fine aggregate 50.00%, and filler 5.75%. This shows that the aggregate characteristics of the Sewan river for the AC-WC mixture with the conventional Marshall method that meet the 2018 General Specifications of Highways are stability (Asphalt content 4.00%-11.00%), Flow (Asphalt content 4.00%-11 0.00%), VIM (asphalt content 4.00%-7.50%), VMA (asphalt content 5.75%-11.00%) and VFB (asphalt content 5.75%-11.00%). As for the Marshall Immersion test, the remaining Marshall stability value is 95.15%.  


Teras Jurnal ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 179
Author(s):  
Said Jalalul Akbar ◽  
Wesli Wesli ◽  
Lis Ayu Widari

<p align="center"><strong>Abstrak</strong></p><p class="11daftarpustaka"> </p><p>Campuran beraspal panas adalah kombinasi antara agregat yang dicampur merata dan dilapisi oleh aspal. Bahan penyusun dari campuran AC-BC hampir sama dengan bahan penyusun campuran aspal beton lainnya yaitu agregat halus, agregat kasar, <em>filler </em>dan aspal, yang membedakan adalah komposisi gradasi masing-masing lapisan. Penelitian ini membahas mengenai pengaruh penggantian Filler pada perkerasan jalan aspal beton AC-BC. Adapun tujuan dari penelitian ini adalah untuk mengetahui bagaimana pengaruh penggunaan<em> </em>Abu batu karang<em> </em>sebagai <em>Filler </em>dan pasir besi sebagai agregat halus terhadap karakteristik Marshall terhadap campuran Aspal AC-BC (<em>Asphalt Concrete – </em><em>Binder Course</em>) terhadap stabilitas dengan metode Spesifikasi Umum Bina Marga 2010 Revisi 3, Benda uji yang didapatkan dari kadar aspal optimumnya adalah sebesar 6,2 % dan untuk benda uji penambahan variasi yang digunakan adalah abu batu karang dan pasir besi  25% - 50% -75% - 100%. Adapun Hasil dari pengujian di laboratorium di dapatkan hasil grafik yang naik turun, peningkatan nilai stabilitas didapat dari penambahan kadar variasi 25%, 50%, 75%, dan mengalami penurunan pada penambahan 100% variasi pasir besi dan abu batu karang, sedangkan nilai Density meningkat pada variasi 100%,  VMA , VIM dan FLOW dengan penambahan<em> </em>pasir besi dan abu batu karang menurun pada variasi 50%-100%, sedangkan VFA, MQ  terjadi Peningkatan yang tidak terlalu signifikan pada variasi 100%. Maka dapat disimpulkan variasi penambahan abu batu karang dan dan pasir besi  sebagai pengganti <em>filler</em> dan penganti agregat halus memenuhi spesifikasi bina marga 2010 revisi 3.</p><p><em> </em></p><p>Kata Kunci:<em> Spesifikasi 2010 rev 3, </em><em>Filler, Agregat halus,</em><em> </em><em>Parameter Marshall</em><em></em></p><p align="center"><strong> </strong></p><p align="center"><strong> </strong></p><p align="center"><strong>Abstract</strong></p><p class="11daftarpustaka"> </p><p class="11daftarpustaka">Hot asphalt mixture is a combination of aggregates that are mixed evenly and coated with asphalt. The composition of AC-BC mixture is almost the same as the composition of other concrete asphalt mixers, namely fine aggregate, coarse aggregate, filler and asphalt, the difference is the gradation composition of each layer. This study discusses the effect of Filler replacement on AC-BC asphalt concrete pavement. The purpose of this research is to find out how the influence of the use of coral ash as fillers and iron sand as fine aggregate on the Marshall characteristics of the Asphalt Concrete - Binder Course asphalt mixture against stability with the General Reinforcement 2010 Revised 3 General Specifications method, The specimens obtained from the optimum asphalt content is 6.2% and for specimens the addition of variations used is rock ash and iron sand 25% - 50% -75% - 100%. As for the results of testing in the laboratory graph results get up and down, increasing the value of stability obtained from adding levels of variation 25%, 50%, 75%, and decreased in the addition of 100% variation of iron sand and rock ash, while the Density value increased at variations of 100%, VMA, VIM and FLOW with the addition of iron sand and coral ash decreased at a variation of 50% -100%, while VFA, MQ occurred a not too significant increase at 100% variation. Then it can be concluded that variations in the addition of coral ash and iron sand as a substitute for filler and substitute for fine aggregate meet the specifications of the 2010 revision 3.</p><p class="11daftarpustaka">Keywords: 2010 rev 3 specification, filler, fine aggregate, Marshall parameters</p>


2021 ◽  
Vol 7 ◽  
Author(s):  
Shutang Liu ◽  
Lin Zhu ◽  
Huiqin Zhang ◽  
Tao Liu ◽  
Ping Ji ◽  
...  

The graded mineral aggregate composed of coarse aggregate, fine aggregate, and mineral powder is the main component of hot asphalt mixture (HMA), and it occupies a mass ratio of more than 95% in HMA. The gradation variability of mineral aggregate is frequently an unavoidable problem in the construction of asphalt pavement engineering. In order to investigate the effect of gradation variability on the volume parameters and key performances of HMA, the asphalt concrete with a nominal maximum particle size of 20 mm (AC20) was selected as the research carrier. Firstly, a benchmark mineral aggregate gradation (BMAG) was designed based on the theory of dense skeleton gradation presented in the paper. Secondly, six types of HMA (that is, AC20) with variable gradations were also determined and all the specimens were prepared by rotary compaction process with the same optimum asphalt content (gradation varies but asphalt content remains the same), and finally based on asphalt pavement analyzer, the performances of all the specimens of each gradation were tested. The results show that, compared with the BMAG-HMA, the volume parameters such as air voids, voids in mineral aggregate, and voids filled with asphalt of the variable-graded HMA change in different directions, but the water stability and high-temperature performance both degrade greatly. The experimental results also show the feasibility and effectiveness of the dense skeleton gradation design theory adopted in this study.


2020 ◽  
Vol 3 (1) ◽  
pp. 130
Author(s):  
Dony Triyatno ◽  
Yosef Cahyo ◽  
Ahmad Ridwan

Road construction in Indonesia mostly uses concrete asphalt. This study aims to determine the optimum level of asphalt produced in a concrete asphalt mixture with tofu pulp filler, in terms of the stability of Marshall, flow, VIM, VMA, VFB, and MQ. Asphalt concrete mixture in this study uses AC 60/70 asphalt. This study uses 5 samples, each using a different asphalt content, namely: 5%, 5.5%, 6%, 6.5%, 7%, with one sample consisting of 3 variants.  The material used is a coarse coral aggregate held by sieve No. 8 (2,36mm). Fine aggregate with Brantas river sand passes filter no.8 (2.36mm), and fillers use tahas pulp bypassing filter no. 200 (0.075mm). The results of this study on Marshall characteristics obtained asphalt content of 5% and 6% with the average value of stability 712 and 881, Flow 3.3 mm and 2.4 mm, VIM 4.65% and 4.24% VMA 19.29% and 17.87%, VFB values of 75.41% and 76.15%, and MQ 271 kg / mm and 433kg / mm.Pembuatan konstruksi jalan di Indonesia banyak menggunakan aspal beton. Penelitian ini bertujuan untuk mengetahui kadar aspal optimum yang dihasilkan pada campuran aspal beton dengan filler ampas tahu, ditinjau dari stabilitas Marshall, flow, VIM, VMA, VFB, dan MQ. Campuran aspal beton dalam penelitian ini menggunakan aspal minyak AC 60/70. Penelitian ini menggunakan 5 sampel, masing-masing menggunakan kadar aspal yang berbeda yaitu: 5%, 5,5%, 6%, 6,5%, 7%, dengan satu sampel terdiri dari 3 varian. Tahapan penelitian yaitu agregat kasar batu koral tertahan saringan no. 8 (2,36mm), agregat halus dengan pasir sungai brantas lolos saringan no.8 (2,36mm), dan filler menggunakan ampas tahus dengan lolos saringan no. 200 (0,075mm). Hasil dari penelitian ini pada karakteristik Marshall didapat kadar aspal otimum 5% dan 6% dengan nilai rerata stabilitas 712 dan 881, Flow 3,3 mmdan 2,4 mm, VIM 4,65% dan 4,24% VMA 19,29% dan 17,87%, nilai VFB 75,41% dan 76,15%, dan MQ 271 kg/mm dan 433kg/mm.


2021 ◽  
Vol 3 (2) ◽  
pp. 247-255
Author(s):  
Dede Novit Senolinggi ◽  
Alpius ◽  
Charles Kamba

This study is to get character each of Laston base mixture using the Mount Pura Lau stone, Tikala District. The methodology in this study is to test each character of the sample to be tested for its, whether it is coarse aggregate, fine aggregate, filler, and asphalt. After testing each character, we will design the composition of the mixture for the manufacture of rough Laston Base (AC-BASE) specimens and obtain several variants of asphalt content, namely 4.5%, 5%, 5.55%, 6%, and 6.5%. After getting the composition, the test object will be made immediately. After the object has been made, it is time to test with Marshall test tool to obtain the residual Marshall Immersion / Stability Index (SMS) or the durability of the mixture using the optimum bitumen content. The results of the optimum asphalt content were 5.5%, MQ 906.88 Kg / mm and immersion index (IP) 96.06% which showed that met the requirements, namely 90% and meets the specifications of Bina Marga. So that it can be used as a recommendation to the regional government and local residents.


2018 ◽  
Vol 2 (2) ◽  
pp. 54
Author(s):  
Fakhrul Rozi Yamali

The mixture of asphalt sand or often called as LATASIR (a thin Layer of asphalt Sand) is often used on the streets as light as local roads or road environment, in order to restrain the rate of water so as not to enter into pores in it. This mixture consists only of fine aggregate or sand or a mixture of both, so of coarse aggregate is not found in its alloy, so have the resilience of the Groove (rutting) are low and cannot be used on roads with heavy traffic or the area slopes. To improve the quality of asphalt mixture Latasir then do the addition of waste tire rubber out of the motor. This research was conducted with the marshall test asphalt plan levels, with 7%, 8%, 9%, 10% and 11% in advance. After obtained the value levels of Optimum Asphalt (KAO), then do the test with the addition of marshall rubber tyres outside the motor of 1%, 2%, 3%, 4% and 5% against weight. The research results obtained a value of 9.8%, KAO then conducted testing of marshall by using a variation of the rubber tyres outside the motor changes characteristic of Marshall, the degree of suppleness and durability is better, but there is a cavity the air that many great VIM or value, so that the value of the VFA became small. From all levels of rubber in asphalt has a great degree of flexibility in rubber 3%, but that filled the whole terms of the 2010 revision 3 technical specifications on levels of 1.5% rubber.Keywords: Latasir Mixture, KAO, Waste Rubber Tyres Outside Motor, Marshall


2016 ◽  
Vol 35 (3) ◽  
pp. 159 ◽  
Author(s):  
Huan He ◽  
Luc Courard ◽  
Eric Pirard ◽  
Frederic Michel

Fine aggregate is one of the essential components in concrete and significantly influences the material properties. As parts of natures, physical characteristics of fine aggregate are highly relevant to its behaviors in concrete. The most of previous studies are mainly focused on the physical properties of coarse aggregate due to the equipment limitations. In this paper, two typical fine aggregates, i.e. river sand and crushed rock, are selected for shape characterization. The new developed digital image analysis systems are employed as the main approaches for the purpose. Some other technical methods, e.g. sieve test, laser diffraction method are also used for the comparable references. Shape characteristics of fine aggregates with different origins but in similar size ranges are revealed by this study. Compared with coarse aggregate, fine grains of different origins generally have similar shape differences. These differences are more significant in surface texture properties, which can be easily identified by an advanced shape parameter: bluntness. The new image analysis method is then approved to be efficient for the shape characterization of fine aggregate in concrete.


Author(s):  
Tino Putro Pangestu ◽  
Wasiu Akande Ahmad ◽  
Adi Setiabudi Bawono ◽  
Mohamad Aqifd

This study aims to determine Marshall's characteristics using asphalt binder modified polymer AC 50/70 (Starbit E-55) using local Bantak material. The test method used is a hot mix asphalt (Hot Mix) with the Marshall method. The asphalt content used was 5% successively; 5.5%; 6%; 6.5%; and 7% consisting of 3 specimens for each variant. The research was carried out at the Material Laboratory of the Department of Civil Engineering and Planning, Faculty of Engineering, Yogyakarta State University. The results of the Marshall characteristic performance test at the Optimum Asphalt Level (KAO) 6.5% are as follows: Marshall stability mean value is 1197.6 kg, Density mean value is 2.34 gr/cc, the mean value of melt (Flow) is 3, 1 mm, the mean value of VIM (Void in Mix) was 4.83%, the mean value of VMA (Void in Mineral Aggregate) was 13.40%, the mean value of VFB (Void Filled Bitumen) was 60.61%, and the mean value of MQ (Marshall Quotient) 391.08 kg/mm.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1928 ◽  
Author(s):  
Thi-Thuy-Hang Nguyen ◽  
Duc-Hung Phan ◽  
Hong-Ha Mai ◽  
Duy-Liem Nguyen

The compressive characteristics of the steel-slag concrete were investigated through an experimental test. The term “steel-slag concrete” in this research work was defined as a kind of concrete using steel-slag material as a coarse aggregate replacement. Three types of the steel-slag concretes were examined under compression as follows: XT01, XT02, XT03 with their cement/water ratios of 1.76, 2.00, 2.21, respectively. The coarse aggregate used in producing concrete was steel-slag material, while the fine aggregate was traditional river sand; the ratio of coarse aggregate to fine aggregate was kept constant at a value of 1.98. Firstly, the age-dependent compressive strength of the steel-slag concretes were investigated up to one year; it was clear that the concrete strength increased rapidly in 7 days, then more and more slowly after that. Secondly, the modulus of elasticity and Poisson’s ratio of the steel-slag concretes were explored at the 28-day age. Thirdly, there was an important size and shape effect on the compressive strength of the XT02, and its significance of brittleness in failure was analytically analyzed. Lastly, the effects of water amount added in the XT02 on its compressive strength and slump were evaluated at the 28-day age.


Sign in / Sign up

Export Citation Format

Share Document