scholarly journals Effect of Gradation Variability on Volume Parameter and Key Performances of HMA

2021 ◽  
Vol 7 ◽  
Author(s):  
Shutang Liu ◽  
Lin Zhu ◽  
Huiqin Zhang ◽  
Tao Liu ◽  
Ping Ji ◽  
...  

The graded mineral aggregate composed of coarse aggregate, fine aggregate, and mineral powder is the main component of hot asphalt mixture (HMA), and it occupies a mass ratio of more than 95% in HMA. The gradation variability of mineral aggregate is frequently an unavoidable problem in the construction of asphalt pavement engineering. In order to investigate the effect of gradation variability on the volume parameters and key performances of HMA, the asphalt concrete with a nominal maximum particle size of 20 mm (AC20) was selected as the research carrier. Firstly, a benchmark mineral aggregate gradation (BMAG) was designed based on the theory of dense skeleton gradation presented in the paper. Secondly, six types of HMA (that is, AC20) with variable gradations were also determined and all the specimens were prepared by rotary compaction process with the same optimum asphalt content (gradation varies but asphalt content remains the same), and finally based on asphalt pavement analyzer, the performances of all the specimens of each gradation were tested. The results show that, compared with the BMAG-HMA, the volume parameters such as air voids, voids in mineral aggregate, and voids filled with asphalt of the variable-graded HMA change in different directions, but the water stability and high-temperature performance both degrade greatly. The experimental results also show the feasibility and effectiveness of the dense skeleton gradation design theory adopted in this study.

2007 ◽  
Vol 353-358 ◽  
pp. 2341-2344
Author(s):  
Tao Xie ◽  
Yan Jun Qiu ◽  
Ze Zhong Jiang ◽  
Bo Lan

Water damage of asphalt concrete pavements has been one of the major distresses in highway engineering. Engineering experiences and research results indicate that this damage is due to the extortionate air voids of bitumen mixtures. Paranormal porosity of asphalt mixture is largely the result of the poor controlling of compact degree during paving process. The quality of asphalt pavement is subjected to the controlling methods of compacting of bitumen mixtures. Ultrasonic is an excellent method for non-destructive testing used in various engineering fields. It is also a potentially effective tool to be applied in the control and evaluation of the compaction quality of bitumen mixtures. This paper presents the results of a study aimed at the applicability of ultrasonic technology for evaluation of porosity and compaction quality of bitumen mixtures. It is shown that this technology, which has been successfully used for many years for evaluation of Portland concrete structures, might be used in asphalt pavement engineering to provide a simple, quick, and objective methodology for control and evaluation of the compact quality of bitumen mixtures. The results of laboratory testing demonstrate the potential of this technology.


2010 ◽  
Vol 150-151 ◽  
pp. 1158-1162
Author(s):  
Shu Tang Liu ◽  
Chang Shun Shao ◽  
Wei Dong Cao ◽  
Xiao Liu

Voids in the mineral aggregate (VMA) is an important volume index for hot mix asphalt (HMA). In the popular HMA design methods such as Superpave system and Marshall Method an accurately calculated VMA is a crucial selection index for the aggregate gradation design. In this article a new formula for calculating VMA is established from the mathematic deduction based on the air voids and traditional VMA formulas. The new built VMA formula can be used to examine the result of the existing empirical equation in the aggregate gradation design process of Superpave. In fact, when the estimated asphalt content is determined according to the initial asphalt content the new formula can completely replace the empirical one for estimating VMA, offering conveniences to calculating.


UKaRsT ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 37 ◽  
Author(s):  
April Gunarto

AbstractThis study aims to determine the mixture of Pine Flowers using the Marshall method, and to determine the optimum asphalt content produced in concrete asphalt mixture with Pine Flower fillers, reviewed from the Marshall reserves, flow, VIM (voids In Mix), VMA (Void In Mineral ) Aggregate), VFB (Void Filled Bitumen), and Marshall quotient (MQ).The concrete asphalt mixture method in this study used AC 60/70 oil asphalt. This study consisted of 5 samples, each using different asphalt levels, namely: 5%, 5.5%, 6%, 6.5%, 7%. With each sample consisting of 3 variants of sample specimens. This research was conducted at the Technical Laboratory, the university attended. The stages of the study included coarse aggregate of the solid rock held by filter no. 8 (2.36mm), fine aggregate with brantas river sand passes the no. 8 (2.36mm), and fillers use pine ashes by passing filter no. 200 (0.075mm).The results of this study about Marshall characteristics obtained Optimal Asphalt levels of 6.5% with a mean Stability value of 1417, a mean Flow value of 3.6 mm, a mean value of VIM (voids In Mix) 4.11%, a mean value of VMA (Void In Mineral Aggregate 16.69%, VFB (Void Filled Bitumen) mean value 73.57%, and Marshall quotient (MQ) mean value 314 kg / mm. Keywords: Concrete Asphalt, Marshall Method, Pine Flowers


2013 ◽  
Vol 405-408 ◽  
pp. 1871-1874
Author(s):  
Gen Chuan Luo

Rutting is one of the most hazardous damage form of asphalt pavement.But,owing to itself inherent in the viscoelastic characteristics of asphalt mixture,the diversity of factors influencing the high temperature of asphalt pavement anti-rutting performance and the complexity of rut formation,this three reasons make ruts become a worldwide problem.Starting from the mixture.This article analyzed the influence factors of the rutting resistance of asphalt mixture at high temperature.For asphalt mixture, through the experimental data, the research status at home and abroad, from the type of asphalt, asphalt content, grading of aggregates and air voids four aspects analysis and study the influence factors of the stability of asphalt mixture at high temperature.


UKaRsT ◽  
2017 ◽  
Vol 1 (1) ◽  
pp. 89
Author(s):  
April Gunarto

AbstractThis study aims to determine the mixture of Pine Flowers using the Marshall method, and to determine the optimum asphalt content produced in concrete asphalt mixture with Pine Flower fillers, reviewed from the Marshall reserves, flow, VIM (voids In Mix), VMA (Void In Mineral ) Aggregate), VFB (Void Filled Bitumen), and Marshall quotient (MQ).The concrete asphalt mixture method in this study used AC 60/70 oil asphalt. This study consisted of 5 samples, each using different asphalt levels, namely: 5%, 5.5%, 6%, 6.5%, 7%. With each sample consisting of 3 variants of sample specimens. This research was conducted at the Technical Laboratory, the university attended. The stages of the study included coarse aggregate of the solid rock held by filter no. 8 (2.36mm), fine aggregate with brantas river sand passes the no. 8 (2.36mm), and fillers use pine ashes by passing filter no. 200 (0.075mm).The results of this study about Marshall characteristics obtained Optimal Asphalt levels of 6.5% with a mean Stability value of 1417, a mean Flow value of 3.6 mm, a mean value of VIM (voids In Mix) 4.11%, a mean value of VMA (Void In Mineral Aggregate 16.69%, VFB (Void Filled Bitumen) mean value 73.57%, and Marshall quotient (MQ) mean value 314 kg / mm. Keywords: Concrete Asphalt, Marshall Method, Pine Flowers


2018 ◽  
Vol 24 (5) ◽  
pp. 124
Author(s):  
Mohammed Qadir Ismael ◽  
Reem Fouad Ahmed Al-Harjan

The current Iraqi standard specifications for roads and bridges allowed the prepared Job-Mix Formula for asphalt mixtures to witness some tolerances with regard to the following: coarse aggregate gradation by ± 6.0 %, fine aggregate gradation by ± 4.0 %, filler gradation by ± 2.0 %, asphalt cement content by ± 0.3 % and mixing temperature by ± 15 oC. The objective of this work is to evaluate the behavior of asphalt mixtures prepared by different aggregates gradations (12.5 mm nominal maximum size) that fabricated by several asphalt contents (40-50 grade) and various mixing temperature. All the tolerances specified in the specifications are taken into account, furthermore, the zones beyond these tolerances are also observed. The evaluation process is illustrated by volumetric properties such as density, air voids, voids in mineral aggregate and voids filled with asphalt. Marshall test is carried out to find stability and flow values. The resistance to moisture effect is investigated by conducting the compressive test for dry and water immersed conditions to find the index of retained strength. The experimental results supported the recommendations to increase tolerances of coarse and fine aggregate gradations to ± 7.0 % and         ± 5.0 % respectively. The optimum asphalt content tolerance can be increased to ± 0.5 %. The tolerances of filler gradation and mixing temperature are preferable to keep their current values.  


2013 ◽  
Vol 361-363 ◽  
pp. 1847-1850
Author(s):  
Hong Bao Li ◽  
Yan Qing An

Rutting is one of the most hazardous damage form of asphalt pavement.But,owing to itself inherent in the viscoelastic characteristics of asphalt mixture,the diversity of factors influencing the high temperature of asphalt pavement anti-rutting performance and The complexity of rut formation,this three reasons make ruts become a worldwide problem.Starting from the mixture, This article analyzed the influence factors of the rutting resistance of asphalt mixture at high temperature.For asphalt mixture, through the experimental data, the research status at home and abroad, from the type of asphalt, asphalt content, grading of aggregates and air voids four aspects analysis and study the influence factors of the stability of asphalt mixture at high temperature.


2018 ◽  
Vol 1 (4) ◽  
pp. 89-98
Author(s):  
Mohd Fahmi Abdya P. ◽  
Sofyan M. Saleh ◽  
Yusria Darma

Asphalt and Aggregate is the main ingredient of the asphalt concrete layer which determines the quality of asphalt pavement. One of the main cause of the damage and decrease of asphalt pavement strength on the road is the low strength and durability of the asphalt mixture. . But in the other side the utilization of local materials is expected to be used maximally to improve efficiency in terms of financing, especially for island area such as Sabang city of Aceh Province. Importing material from Ace Besar district is need a big cost. In solving this problem therefore it is necessary to maximize the use of local material. this research is done for find out the effect of the use of fine aggregate on the characteristics of the coarse layer of asphalt concrete mixture characteristics (AC-WC)with the addition of Sabang fine aggregate starting from 0%, 25%, 50%, 75% and 100%. The initial step in this research is find the value of optimum asphalt content (KAO).The result of this research shows that the more composition of the Sabang fine aggregate then the decreasing the stability value. The highest stability value is on the asphalt concrete mixture without Sabang fine aggregate substitution with the asphalt content is 5,38% with the amount of 1.658,73 kg and the lowest stability value is on the asphalt concrete mixture with 100% of Sabang fine aggregate substitution with asphalt content is 6,35% in the amount of 979,35 kg. The maximum composition of sabang fine aggregate which pass the requirement specification of Asphalt concrete AC-WC volumetric characteristic is 50% on the level of 5,87% with the stability value is 1.225,81 kg.


2021 ◽  
Vol 13 (13) ◽  
pp. 2613
Author(s):  
Nectaria Diamanti ◽  
A. Peter Annan ◽  
Steven R. Jackson ◽  
Dylan Klazinga

Density is one of the most important parameters in the construction of asphalt mixtures and pavement engineering. When a mixture is properly designed and compacted, it will contain enough air voids to prevent plastic deformation but will have low enough air void content to prevent water ingress and moisture damage. By mapping asphalt pavement density, areas with air void content outside of the acceptable range can be identified to predict its future life and performance. We describe a new instrument, the pavement density profiler (PDP) that has evolved from many years of making measurements of asphalt pavement properties. This instrument measures the electromagnetic (EM) wave impedance to infer the asphalt pavement density (or air void content) locally and over profiles.


2016 ◽  
Vol 62 (2) ◽  
pp. 35-44 ◽  
Author(s):  
Y. Issa

Abstract The need to modify conventional pavement rises due to high maintenance cost of the highway systems. With the continuously increased consumption, a large amount of waste glass materials is generated annually in the world. This paper aims to study the performance of pavement asphalt in which a fractional aggregate is replaced with crushed glass. In this paper, some important properties of asphalt mix, including stability, flow, specific gravity and air voids are investigated. The original sample is prepared without adding glass for different percentages of bitumen. Other samples are prepared by adding crushed glass to the mix with 5%, 10%, and 15% by aggregate weight. The results show that the properties of glass-asphalt mixture are improved in comparison with normal asphalt pavement. It is concluded that the use of waste glass in asphalt pavement is desirable.


Sign in / Sign up

Export Citation Format

Share Document