scholarly journals Studies on Electrical and Optical Property of Polyaniline/ZnO Nanocomposites

2021 ◽  
Vol 7 (1) ◽  
pp. 933-936
Author(s):  
Basavaraj Bharati ◽  
Sannakki Basavaraja

The conducting polymer polyaniline and PANI/ZnO nanocomposites were synthesized by in-situ polymerization method at 0-5 °C temperature with ammonium persulphate as an oxidising agent. The optical band gap of PANI/ZnO nanocomposites have been studied at different weight percentage such as 10%, 30% and 50%, at room temperature. The XRD pattern confirmed the hexagonal wurtzite structure of the ZnO product. The particle size was calculated by using the Debye-Scherrer relation and it was found to be in the range of 20-50 nm. The obtained absorption spectra at 385 nm is the charectestic peak of ZnO and observed for all weight percentages of nanocomposites. The peaks occured at 300 nm and 470 nm confirms the formation of polyaniline in the nanocomposites. Further the dielectric properties such as dielectric constant, dielectric loss and AC conductivity for the PANI with PANI/ZnO composites at different weight percentages are studied as a function of frequency in the range 5 Hz–35 MHz at room temperature.

2021 ◽  
Vol 19 (49) ◽  
pp. 15-21
Author(s):  
Mohammed Abdilridha Salman ◽  
Salma M. Hassan

ABSTRACT: Polypyrrole and polypyrrole / silver nanocomposites were fabricated by in-situ polymerization employing Ammonium Persulphate as an oxidizing agent. Nanocomposites were synthesized by combining polypyrrole and silver nanoparticles in various weight percentages (0.1%, 0.5%, 3%, 5% and 7% wt.). Crystallographic data were collected using X-ray diffraction.  PPy particles were found to have an orthorhombic symmetry. In contrast, PPy/Ag nanocomposites were reported to have monoclinic structure. The crystallite size was determined by XRD using Scherrer equation and considered to be within 49 nm range. DC conductivity of pelletized samples was evaluated in the temperature range of 323.15k to 453.15k. The conductivity displayed an increase when the temperature is increased from 323.15k to 453.15k. Activation energies were determined from plots of Arrhenius for all nanocomposites. The findings indicated that the activation energy decrease with increasing the weight percentage of Ag nanoparticles in the nanocomposites.


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1077-1082 ◽  
Author(s):  
H. J. CHOI ◽  
M. S. CHO ◽  
I. S. LEE

As a novel candidate of electrorheological (ER) material, core/shell composite particles (PAPMMA) of poly(methyl methacrylate) (PMMA) core and polyaniline (PANI) shell were prepared and adopted as a dispersed phase. PAPMMA particles, obtained by a dispersion polymerization method, were spherical and possessed a monodisperse particle size distribution, in which the PANI shell was introduced on the surface of PMMA via an in-situ polymerization of aniline by adding an oxidant in an aqueous acidic solution. Yield stress of the PAPMMA suspensions under an applied electric field was observed to be increased with a particle size. In addition, monodisperse acrylic microspheres with aniline moiety on the surface were prepared by a seeded emulsion method, and then composite particles possessing chemically bonded PANI shell (PA-PGMA) were prepared via an in-situ polymerization of aniline. Their ER characteristics were also examined.


2013 ◽  
Vol 815 ◽  
pp. 367-370 ◽  
Author(s):  
Xiao Qiu Song ◽  
Yue Xia Li ◽  
Jing Wen Wang

Hexadecane microcapsule phase change materials were prepared by the in-situ polymerization method using hexadecane as core materials, urea-formaldehyde resin and urea-formaldehyde resin modified with melamine as shell materials respectively. Effect of melamine on the properties of microcapsules was studied by FTIR, biomicroscopy (UBM), TGA and HPLC. The influences of system concentration, agitation speed and mass ratio of wall to core were also investigated. The results indicated that hexadecane was successfully coated by the two types of shell materials. The addition of melamine into the urea-formaldehyde resin microcapsule reduced microcapsule particle size and microencapsulation efficiency. The influences of factors such as system concentration, agitation speed and mass ratio of wall to core to different wall materials microcapsules presented different variety trends of the microcapsule particle size.


2014 ◽  
Vol 1015 ◽  
pp. 381-384
Author(s):  
Li Liu ◽  
Li Hai Cai ◽  
Dan Liu ◽  
Jun Xu ◽  
Bao Hua Guo

The poly (butylene succinate) (PBS) and 3 wt% attapulgite (ATP) reinforced PBS/ATP nanocomposites with 1,6-hexanediol were fabricated using an in situ polymerization method. The crystallization behaviors indicated that ATP had effectively acted as nucleating agent, resulting in the enhancement on the crystallization temperature. The SEM results showed a superior interfacial linkage between ATP and PBS. Also, ATP could disperse as a single fiber and embed in the polymer matrix, which resulted in the improved mechanical properties.


2019 ◽  
Vol 361 ◽  
pp. 897-907 ◽  
Author(s):  
Jingchun Lv ◽  
Peiwen Zhou ◽  
Linping Zhang ◽  
Yi Zhong ◽  
Xiaofeng Sui ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 985 ◽  
Author(s):  
Yidong Liu ◽  
Lingfeng Jian ◽  
Tianhua Xiao ◽  
Rongtao Liu ◽  
Shun Yi ◽  
...  

CO2 has been regarded as one of the most promising blowing agents for polystyrene (PS) foam due to its non-flammability, low price, nontoxicity, and eco-friendliness. However, the low solubility and fast diffusivity of CO2 in PS hinder its potential applications. In this study, an attapulgite (ATP)/polypyrrole (PPy) nanocomposite was developed using the in situ polymerization method to generate the hierarchical cell texture for the PS foam based on the supercritical CO2 foaming. The results demonstrated that the nanocomposite could act as an efficient CO2 capturer enabling the random release of it during the foaming process. In contrast to the pure PS foam, the ATP/PPy nanocomposite reinforced PS foam is endowed with high cell density (up to 1.9 × 106) and similar thermal conductivity as the neat PS foam, as well as high compression modulus. Therefore, the in situ polymerized ATP/PPy nanocomposite makes supercritical CO2 foaming desired candidate to replace the widely used fluorocarbons and chlorofluorocarbons as PS blowing agents.


2019 ◽  
Vol 33 (13) ◽  
pp. 1950134 ◽  
Author(s):  
Muhammad Ajmal ◽  
M. U. Islam

Y-type hexagonal ferrite (CaBaCo2Ga[Formula: see text]Fe[Formula: see text]O[Formula: see text]) was synthesized by sol–gel technique. The ferrite–polymer composites (1−x)CaBaCo2Ga[Formula: see text]Fe[Formula: see text]O[Formula: see text]+(x)polyaniline (x=0.25, 0.50, 0.75, 1) namely PF1, PF2, PF3 and polyaniline (PANI) were synthesized by in situ polymerization. The synthesized samples were characterized by XRD, SEM, electrical and dielectric measurements, optical and magnetic studies. XRD pattern reveals a broad peak of polyaniline which is an indication of amorphous nature of PANI. Room-temperature resistivity increases from 2.14 × 101 [Formula: see text]cm to 2.78 × 10[Formula: see text]cm as ferrite content increases due to resistive behavior of the ferrite particles dispersed in the PANI matrix. The value of dielectric constant decreases at fixed frequency with increasing concentration of ferrite filler which is predominantly due to exchange of electrons between Fe[Formula: see text] and Fe[Formula: see text] ions that ultimately results in enhancement of electric polarization and conductivity. The optical bandgap increases with increasing amount of ferrite in the composites. The saturation magnetization and remanence increase with the increase of ferrite filler amount in PANI matrix whereas coercivity decreases. The decrease in coercivity and increase in saturation magnetization are related to Brown’s relation. The present nanocomposite samples may be the best candidates for electromagnetic shielding.


2014 ◽  
Vol 599-601 ◽  
pp. 18-21
Author(s):  
Shu Long Hu ◽  
Jian Lv ◽  
Feng Ying Lu ◽  
Hua Shan Liu ◽  
De Ming Zeng

In this paper, meso-porous MCM-41 was synthesized at room temperature using cationic surfactant cetyltrimethylammonium bromide (CTAB) as the template agent. Then MCM-41/unsatura-ted polyester resin (UPR) materials were prepared by in-situ polymerization with the meso-porous MCM-41. MCM-41/UPR in-situ composites were prepared by roller milling and molding processes. Effects of meso-porous MCM-41 on rheological properties and wear resistance of the MCM-41/UPR composites have been investigated. It is shown that MCM-41 has a diameter in range of 4-5 nm and the pores are highly ordered. MCM-41 can improve the rheological properties and wear resistance of the composites. When MCM-41 content is 2%, the mass abrasion loss is decreased by 37.4%.


Sign in / Sign up

Export Citation Format

Share Document