scholarly journals Convolutional Neural Network With Batch Normalization for Classification of Emotional Expressions Based on Facial Images

Author(s):  
Bambang Krismono Triwijoyo ◽  
Ahmat Adil ◽  
Anthony Anggrawan

Emotion recognition through facial images is one of the most challenging topics in human psychological interactions with machines. Along with advances in robotics, computer graphics, and computer vision, research on facial expression recognition is an important part of intelligent systems technology for interactive human interfaces where each person may have different emotional expressions, making it difficult to classify facial expressions and requires training data. large, so the deep learning approach is an alternative solution., The purpose of this study is to propose a different Convolutional Neural Network (CNN) model architecture with batch normalization consisting of three layers of multiple convolution layers with a simpler architectural model for the recognition of emotional expressions based on human facial images in the FER2013 dataset from Kaggle. The experimental results show that the training accuracy level reaches 98%, but there is still overfitting where the validation accuracy level is still 62%. The proposed model has better performance than the model without using batch normalization.

Author(s):  
Yung-An Hsieh ◽  
Yichang (James) Tsai

Raveling is one of the most common asphalt pavement distresses. The survey of its condition is required for transportation agencies to ensure roadway safety and appropriately apply preservation and rehabilitation treatments. However, the traditional raveling condition survey, including the determination of the raveling severity, is typically manually conducted by in-field visual inspection methods that are time consuming, labor intensive, and error prone. Although automated raveling detection and severity classification models have been developed, these existing models have shortcomings. Therefore, there is an urgent need to develop a more accurate and reliable model to automatically detect and classify raveling. This study proposes the first convolutional neural network (CNN)-based model for automated raveling detection and classification. Compared with general CNNs, the proposed model combines the data-driven features learned from training data and macrotexture features of 3D pavement surface data to achieve better performance. The proposed model was evaluated and compared with existing machine learning models using real-world 3D pavement surface data collected from the state of Georgia, U.S. By combining data-driven features with macrotexture features, the proposed model achieved the highest accuracy of 90.8% on raveling classification. The proposed model also achieved classification precision and recall higher than 85% for all raveling severity levels, which is more accurate and robust than existing models. It is concluded that, with multi-type features extraction and proper model design, the proposed model can provide more accurate and reliable predictions for raveling detection and classification.


Khazanah ◽  
2020 ◽  
Vol 12 (2) ◽  
Author(s):  
Xosya Salassa ◽  
◽  
Wais Al Qarni ◽  
Trional Novanza ◽  
Fahmi Guntara Diasa ◽  
...  

Indonesia is an agrarian country whose people mostly work in agriculture by contributing to the 3rd largest GDP. But on the other hand, the main problem in agriculture is the development of pests and diseases of crops. There are cases where there are crops that are attacked by diseases with less obvious symptoms for farmers. For example, in citrus plants that are attacked by CVPD. Initially, the citrus plant does not show too early symptoms of the disease, making it difficult to distinguish from healthy plants. Based on these problems early detection and identification of plant diseases are the main factors to prevent and reduce the spread of plant diseases. The study used deep learning methods with the Convolutional Neural Network (CNN) algorithm model. The dataset used comes from PlantVillage with a total of 20,639 leaf image files that have been classified based on their respective classes. The design of the model architecture is done by designing the CNN model following the DenseNet121 architecture, by changing the parameters to improve the accuracy results. Image size is 64, train shape (20639, 64, 64, 3), epoch value 50,100, and 150. The number of input layers used is 4 layers with shapes (64, 64, 3). Densenet121 shape (1024), global average pooling2D shape (1024), batch normalization 2 (1024), dropout (1024), dense (256), batch normalization 3 (256), root (Dense) (15). This research was conducted with 3 epoch iteration tests to find the best accuracy value. The training data for epoch 50,100, and 150 produces an average model accuracy of 99.38% and the average value of the model loss is 0.019% can also be seen from the testing data results for epoch 50,100, and 150 has an average model of 95.16% and can be seen also from the average value for the loss is 0.20%. Based on the algorithm that applied the resulting training accuracy of 99.58% and the accuracy of testing 96.41% then design this application is useful to accurately detect diseases in plants by using leaf imagery of the plant.


BUANA ILMU ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 192-208
Author(s):  
Ayu Ratna Juwita ◽  
Tohirn Al Mudzakir ◽  
Adi Rizky Pratama ◽  
Purwani Husodo ◽  
Rahmat Sulaiman

Batik merupakan suatu kerjianan tangan yang memiliki nilai seni yang cukup tinggi dan juga salah satu bagian dari budaya indonessia. Untuk melestraikan budaya warisan batik dapat dikakukan dengan berbagai cara dengan pengenalan pola batik yang sangat beragam khususnya batik karawang. Penelitian ini membahas klasifikasi pola batik karawang menggunakan Convolutional Neural Network (CNN)  dengan ciri gray level Co-ocurrence Matrix. Proses awal yang akan dilakukan  yaitu preprocessing untuk mengubah citra warna menjadi grayscale, selanjutnya citra akan di segmentasikan sehingga memisahkan citra pola batik dengan background menggunakan metode otsu dan di ekstraksi menggunakan metode gray level co-ocurrence matrix untuk mendeteksi pola-pola batik. selanjutnya akan diklasifikasikan menggunakan metode Convolutional Neural Network (CNN) yang memberikan hasil klasifikasi citra batik. Dengan penerapan model klasifikasi citra batik Karawang ini memliki data training sebanyak 1094 citra latih dengan nilai akurasi 18,19% untuk citra latih,  citra dapat mengklasifikasikan dengan uji coba 344 citra batik, 45 citra batik Karawang, 299 citra batik luar Karawang mencapai 18,60% nilai tingkat akurasi, sedangkan hasil uji coba menggunakan citra batik karawang yang dapat dikenali dan diklasifikasikan mencapai nilai tingkat akurasi 73,33 %. Kata Kunci : Klasifikasi citra batik, CNN, GLCM, Otsu, Image Processing   Batik is a handicraft that has a high artistic value and also Batik is a part of Indonesian culture. To preserve the cultural heritage of batik it can be do in various ways with the introduction of many diverse batik patterns, especially karawang batik.. This study discusses the classification of Karawang batik patterns using Convolutional Neural Network (CNN) with gray level co-occurrence matrix characteristics. Initial process is preprocessing to convert the color image to grayscale, Then the image will be segmented. It can separated the image of the batik pattern from the background using the Otsu method and extracted using the gray level co-occurrence matrix method to detect batik patterns. Then, it will be classified using the Convolutional Neural Network (CNN) method which gives the results of batik image classification. With the application of this Karawang batik image classification model, it has training data of 1094 training images with an accuracy value of 18.19% for training images, images can be classified by testing 344 batik images, 45 Karawang batik images, 299 outer Karawang batik images reaching 18.60 % the value of the accuracy level, while the results of the trial using the image of batik karawang which can be recognized and classified reach an accuracy level of 73.33%. Keywords: Batik image classification, CNN, GLCM, Otsu, Image Processing


2021 ◽  
Vol 11 (6) ◽  
pp. 2838
Author(s):  
Nikitha Johnsirani Venkatesan ◽  
Dong Ryeol Shin ◽  
Choon Sung Nam

In the pharmaceutical field, early detection of lung nodules is indispensable for increasing patient survival. We can enhance the quality of the medical images by intensifying the radiation dose. High radiation dose provokes cancer, which forces experts to use limited radiation. Using abrupt radiation generates noise in CT scans. We propose an optimal Convolutional Neural Network model in which Gaussian noise is removed for better classification and increased training accuracy. Experimental demonstration on the LUNA16 dataset of size 160 GB shows that our proposed method exhibit superior results. Classification accuracy, specificity, sensitivity, Precision, Recall, F1 measurement, and area under the ROC curve (AUC) of the model performance are taken as evaluation metrics. We conducted a performance comparison of our proposed model on numerous platforms, like Apache Spark, GPU, and CPU, to depreciate the training time without compromising the accuracy percentage. Our results show that Apache Spark, integrated with a deep learning framework, is suitable for parallel training computation with high accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2648
Author(s):  
Muhammad Aamir ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Muhammad Zeeshan Azam ◽  
...  

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we propose a multilayered deep convolutional neural network. The proposed model works in two blocks: Block-I convolutional neural network (B-I CNN), for detection and occurrence of disasters, and Block-II convolutional neural network (B-II CNN), for classification of natural disaster intensity types with different filters and parameters. The model is tested on 4428 natural images and performance is calculated and expressed as different statistical values: sensitivity (SE), 97.54%; specificity (SP), 98.22%; accuracy rate (AR), 99.92%; precision (PRE), 97.79%; and F1-score (F1), 97.97%. The overall accuracy for the whole model is 99.92%, which is competitive and comparable with state-of-the-art algorithms.


2021 ◽  
Vol 7 (2) ◽  
pp. 37
Author(s):  
Isah Charles Saidu ◽  
Lehel Csató

We present a sample-efficient image segmentation method using active learning, we call it Active Bayesian UNet, or AB-UNet. This is a convolutional neural network using batch normalization and max-pool dropout. The Bayesian setup is achieved by exploiting the probabilistic extension of the dropout mechanism, leading to the possibility to use the uncertainty inherently present in the system. We set up our experiments on various medical image datasets and highlight that with a smaller annotation effort our AB-UNet leads to stable training and better generalization. Added to this, we can efficiently choose from an unlabelled dataset.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1688
Author(s):  
Luqman Ali ◽  
Fady Alnajjar ◽  
Hamad Al Jassmi ◽  
Munkhjargal Gochoo ◽  
Wasif Khan ◽  
...  

This paper proposes a customized convolutional neural network for crack detection in concrete structures. The proposed method is compared to four existing deep learning methods based on training data size, data heterogeneity, network complexity, and the number of epochs. The performance of the proposed convolutional neural network (CNN) model is evaluated and compared to pretrained networks, i.e., the VGG-16, VGG-19, ResNet-50, and Inception V3 models, on eight datasets of different sizes, created from two public datasets. For each model, the evaluation considered computational time, crack localization results, and classification measures, e.g., accuracy, precision, recall, and F1-score. Experimental results demonstrated that training data size and heterogeneity among data samples significantly affect model performance. All models demonstrated promising performance on a limited number of diverse training data; however, increasing the training data size and reducing diversity reduced generalization performance, and led to overfitting. The proposed customized CNN and VGG-16 models outperformed the other methods in terms of classification, localization, and computational time on a small amount of data, and the results indicate that these two models demonstrate superior crack detection and localization for concrete structures.


Sign in / Sign up

Export Citation Format

Share Document