scholarly journals Port Equipment Downtime Prediction and Lifetime Data Analysis: Evidence from a Case Study

Author(s):  
Lot Okanminiwei ◽  
Sunday Ayoola Oke

Prediction of downtime and lifetime data for gantry cranes in a container terminal is a crucial concern for port terminals due to the requirement for maintenance planning and capital expenditure. Correct estimation of lifetime behavior for gantry cranes is complex since multiple cranes are involved, each with different costs, capacities; installation, and retirement dates. This paper develops statistically-oriented predictions for the lifetimes of container terminals company fleet of gantry cranes. Data records on downtime for cranes were collected and analyzed using Weibull, normal, and Rayleigh distributions regarding a port in southwestern Nigeria. The downtime, probability density function, cumulative density function, reliability, and hazard rate were analyzed for three shape functions of Weibull, β=0.5, 1, and 3. The same was analyzed for Rayleigh and normal distribution functions. The mean downtime was 30.58 hrs. The highest PDF, CDF, R(t) for all β =0.5, 1, and 3, were 0.26, 0.78, .030 and 13.13, respectively. However, the least values for these parameters are 0.01, 0.71, 0.25, and 0.04, respectively. These values are means for thirty data points and concern the Weibull distribution function. For the Rayleigh distribution, the mean PDF, CDF, R(t) and h(t) are 0.002, 0.042, 0.958 and 0.002 while they are 0.002, 0.456, 0.542 and 35.755 for the normal distribution. This article provides new insights into the lifetime analysis of gantry cranes in a container terminal.

Author(s):  
Baicheng Yan ◽  
Xiaoning Zhu ◽  
Li Wang ◽  
Yimei Chang

In this paper, the integrated scheduling of handling equipment at the railway handling area in container terminals is studied, where rail-mounted gantry cranes, internal trucks, and reach stackers are deployed. In the course of the handling operation, loading and unloading containers are handled simultaneously. The handling process is first studied and some scheduling schemes are put forward. Based on the analysis, the problem is formulated as a mixed-integer programming model, with the objectives of minimizing the makespan and the total waiting time of all equipment. Then, to solve the problem, a genetic algorithm is employed, where the first available machine rule is applied in the selection of trucks and reach stackers. Sets of numerical experiments are conducted to verify the effect of the proposed algorithm. Based on the results of experiments, some key indicators are calculated and the effects of different equipment configuration schemes are studied.


1965 ◽  
Vol 16 (4) ◽  
pp. 307-322 ◽  
Author(s):  
N. T. Bloomer ◽  
T. F. Roylance

SummaryThere have been, in the past, many fatigue tests carried out on a variety of materials and components. These all indicate a wide scattering in the lives (measured by the number of stress cycles to failure) endured by nominally identical components subjected to nominally identical forces before failure occurs. To interpet this scattering several equations have been suggested as representing the statistical distribution functions that fit the lives obtained for individual types of component. Of these functions the log normal distribution function has been perhaps the most widely used. For the central regions of the probability distribution, i.e. about the mean, the log normal distribution and several others represent experimental results very closely indeed, but engineers and designers of all kinds dare not design on the mean fatigue life. They are concerned with specifications that either exclude the possibility of failure or admit only a very small probability of failure. It is thus with the accuracy with which the “lower tail” of the probability distribution curve fits the experimental results that they are concerned.To assess the fit at this lower end for one type of component, a large number (about 1,000) of aluminium specimens have been tested and the corresponding lives plotted. The results are very interesting. They show clearly that the log normal distribution for this type of component and material is pessimistic for a probability of failure of less than 0·3. This result is felt by the authors to be of very great importance. It has further been shown that the use of the “one-sided censored distribution function”, used previously by one of the authors, gives a curve that will fit the lower results better than the complete log normal distribution would do.It is with the testing procedure adopted, the specimens used, the distribution functions considered and the conclusions obtained therefrom that this paper is concerned.


2015 ◽  
Vol 47 (8) ◽  
pp. 24-40 ◽  
Author(s):  
Telman Abbas ogly Aliev ◽  
Naila F. Musaeva ◽  
Matanat Tair kyzy Suleymanova ◽  
Bahruz Ismail ogly Gazizade

2016 ◽  
Vol 48 (4) ◽  
pp. 39-55 ◽  
Author(s):  
Telman Abbas ogly Aliev ◽  
Naila Fuad kyzy Musaeva ◽  
Matanat Tair kyzy Suleymanova ◽  
Bahruz Ismail ogly Gazizade

2018 ◽  
Vol 934 (4) ◽  
pp. 59-62
Author(s):  
V.I. Salnikov

The question of calculating the limiting values of residuals in geodesic constructions is considered in the case when the limiting value for measurement errors is assumed equal to 3m, ie ∆рred = 3m, where m is the mean square error of the measurement. Larger errors are rejected. At present, the limiting value for the residual is calculated by the formula 3m√n, where n is the number of measurements. The article draws attention to two contradictions between theory and practice arising from the use of this formula. First, the formula is derived from the classical law of the normal Gaussian distribution, and it is applied to the truncated law of the normal distribution. And, secondly, as shown in [1], when ∆рred = 2m, the sums of errors naturally take the value equal to ?pred, after which the number of errors in the sum starts anew. This article establishes its validity for ∆рred = 3m. A table of comparative values of the tolerances valid and recommended for more stringent ones is given. The article gives a graph of applied and recommended tolerances for ∆рred = 3m.


Author(s):  
Cuong Truong Ngoc ◽  
Xiao Xu ◽  
Hwan-Seong Kim ◽  
Duy Anh Nguyen ◽  
Sam-Sang You

This paper deals with three-dimensional (3D) model of competitive Lotka-Volterra equation to investigate nonlinear dynamics and control strategy of container terminal throughput and capacity. Dynamical behaviors are intensely explored by using eigenvalue evaluation, bifurcation analysis, and time-series data. The dynamical analysis is to show the stability with bifurcation of the competition and collaboration of multiple container terminals in the maritime transportation. Based on the chaotic analysis, the sliding mode control theory has been utilized for optimization of port operations under disruptions. Extensive numerical simulations have been conducted to validate the efficacy and reliability of the presented control algorithms. Particularly, the closed-loop system has been assessed through chaotic suppression and synchronization strategies for port management. Finally, the presented fundamental techniques can be utilized to provide managerial insights and solutions on efficient seaport operations that allow more timely and cost-effective decision making for port authorities in such a highly competitive environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Arif Budiyanto ◽  
Muhammad Hanzalah Huzaifi ◽  
Simon Juanda Sirait ◽  
Putu Hangga Nan Prayoga

AbstractSustainable development of container terminals is based on energy efficiency and reduction in CO2 emissions. This study estimated the energy consumption and CO2 emissions in container terminals according to their layouts. Energy consumption was calculated based on utility data as well as fuel and electricity consumptions for each container-handling equipment in the container terminal. CO2 emissions were estimated using movement modality based on the number of movements of and distance travelled by each container-handling equipment. A case study involving two types of container terminal layouts i.e. parallel and perpendicular layouts, was conducted. The contributions of each container-handling equipment to the energy consumption and CO2 emissions were estimated and evaluated using statistical analysis. The results of the case study indicated that on the CO2 emissions in parallel and perpendicular layouts were relatively similar (within the range of 16–19 kg/TEUs). These results indicate that both parallel and perpendicular layouts are suitable for future ports based on sustainable development. The results can also be used for future planning of operating patterns and layout selection in container terminals.


2021 ◽  
Vol 11 (5) ◽  
pp. 2153
Author(s):  
Nadia Giuffrida ◽  
Maja Stojaković ◽  
Elen Twrdy ◽  
Matteo Ignaccolo

Container terminals are the main hubs of the global supply chain but, conversely, they play an important role in energy consumption, environmental pollution and even climate change due to carbon emissions. Assessing the environmental impact of this type of port terminal and choosing appropriate mitigation measures is essential to pursue the goals related to a clean environment and ensuring a good quality of life of the inhabitants of port cities. In this paper the authors present a Terminal Decision Support Tool (TDST) for the development of a container terminal that considers both operation efficiency and environmental impacts. The TDST provides environmental impact mitigation measures based on different levels of evolution of the port’s container traffic. An application of the TDST is conducted on the Port of Augusta (Italy), a port that is planning infrastructural interventions in coming years in order to gain a new role as a reference point for container traffic in the Mediterranean.


2021 ◽  
Vol 11 (15) ◽  
pp. 6922
Author(s):  
Jeongmin Kim ◽  
Ellen J. Hong ◽  
Youngjee Yang ◽  
Kwang Ryel Ryu

In this paper, we claim that the operation schedule of automated stacking cranes (ASC) in the storage yard of automated container terminals can be built effectively and efficiently by using a crane dispatching policy, and propose a noisy optimization algorithm named N-RTS that can derive such a policy efficiently. To select a job for an ASC, our dispatching policy uses a multi-criteria scoring function to calculate the score of each candidate job using a weighted summation of the evaluations in those criteria. As the calculated score depends on the respective weights of these criteria, and thus a different weight vector gives rise to a different best candidate, a weight vector can be deemed as a policy. A good weight vector, or policy, can be found by a simulation-based search where a candidate policy is evaluated through a computationally expensive simulation of applying the policy to some operation scenarios. We may simplify the simulation to save time but at the cost of sacrificing the evaluation accuracy. N-RTS copes with this dilemma by maintaining a good balance between exploration and exploitation. Experimental results show that the policy derived by N-RTS outperforms other ASC scheduling methods. We also conducted additional experiments using some benchmark functions to validate the performance of N-RTS.


2020 ◽  
Vol 11 (1) ◽  
pp. 168
Author(s):  
Hyeonu Im ◽  
Jiwon Yu ◽  
Chulung Lee

Despite the number of sailings canceled in the past few months, as demand has increased, the utilization of ships has become very high, resulting in sudden peaks of activity at the import container terminals. Ship-to-ship operations and yard activity at the container terminals are at their peak and starting to affect land operations on truck arrivals and departures. In response, a Truck Appointment System (TAS) has been developed to mitigate truck congestion that occurs between the gate and the yard of the container terminal. The vehicle booking system is developed and operated in-house at large-scale container terminals, but efficiency is low due to frequent truck schedule changes by the transport companies (forwarders). In this paper, we propose a new form of TAS in which the transport companies and the terminal operator cooperate. Numerical experiments show that the efficiency of the cooperation model is better by comparing the case where the transport company (forwarder) and the terminal operator make their own decision and the case where they cooperate. The cooperation model shows higher efficiency as there are more competing transport companies (forwarders) and more segmented tasks a truck can reserve.


Sign in / Sign up

Export Citation Format

Share Document