scholarly journals Longitudinal distribution of the field intensity of a circular focused aperture

Radiotekhnika ◽  
2021 ◽  
pp. 118-128
Author(s):  
V.V. Dolzhikov

Microwave and millimeter-wave antennas focused in their Fresnel zone, which are usually named as near-field focused (NFF) antennas, are becoming increasingly popular. Indeed, when compared to conventional far-field focused antennas, they can guarantee performance improvement at a relatively limited implementation cost, in short-range communication systems, wireless power transfer arrangements, remote nondestructive sensing setups, and radiofrequency identification apparatus, among many others. In this paper, analytical expressions are obtained for calculating the main parameters characterizing the longitudinal distribution of the circular focused aperture field intensity with a relatively large diameter (2R/λ≥10) : the displacement of the intensity maximum relative to the focal point, focusing gain and depth of focus. Cases of uniform and decreasing amplitude distributions of the excitation field are considered. The found approximate relations make it possible to determine the values of the above parameters for any values of the longitudinal coordinate of the focal point, lying both in the Fresnel zone and in the far zone. Comparison with numerical calculations showed that the error in the obtained parameter values does not exceed 5%. The results of this paper will be useful when calculating the field of antennas in the form of a circular focused aperture, as well as focused antenna arrays operating in the Fresnel zone.

Author(s):  
Navaamsini Boopalan ◽  
Agileswari K. Ramasamy ◽  
Farrukh Hafiz Nagi

<span lang="EN-US">Sonar, radar and communication systems solely depend on antenna arrays for signal attainment. These arrays are capable of producing directional signals which can be steered in a certain direction. Faulty elements in an array will result in distorted radiation pattern with increased sidelobe levels.  Far-field faulty antenna detection is necessary due to the near field repairing at complex systems like spacecraft. This paper proposes simulated annealing (SA) optimizing method to find the faulty element’s location in a linear array. In this study, a Chebyshev array is presented with the SA optimization method to detect faulty element location with a random permutation of failure locations tested. This method can successfully detect faulty antenna in a linear array. Even though, this method is developed for linear array it can easily be adapted to a planar array.</span>


Author(s):  
Maria Trigka ◽  
Christos Mavrokefalidis ◽  
Kostas Berberidis

AbstractIn the context of this research work, we study the so-called problem of full snapshot reconstruction in hybrid antenna array structures that are utilized in mmWave communication systems. It enables the recovery of the snapshots that would have been obtained if a conventional (non-hybrid) uniform linear antenna array was employed. The problem is considered at the receiver side where the hybrid architecture exploits in a novel way the antenna elements of a uniform linear array. To this end, the recommended scheme is properly designed so as to be applicable to overlapping and non-overlapping architectures. Moreover, the full snapshot recoverability is addressed for two cases, namely for time-varying and constant signal sources. Simulation results are also presented to illustrate the consistency between the theoretically predicted behaviors and the simulated results, and the performance of the proposed scheme in terms angle-of-arrival estimation, when compared to the conventional MUSIC algorithm and a recently proposed hybrid version of MUSIC (H-MUSIC).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tanzeela Mitha ◽  
Maria Pour

AbstractA novel approach to linear array antennas with adaptive inter-element spacing is presented for the first time. The main idea is based upon electronically displacing the phase center location of the antenna elements, which determine their relative coordinates in the array configuration. This is realized by employing dual-mode microstrip patch antennas as a constitutive element, whose phase center location can be displaced from its physical center by simultaneously exciting two modes. The direction and the amount of displacement is controlled by the amplitude and phase of the modes at the element level. This in turn facilitates reconfiguring the inter-element spacing at the array level. For instance, a uniformly-spaced array could be electronically transformed into a non-uniform one without any mechanical means. The proposed idea is demonstrated in two- and three-element linear antenna arrays. The technique has the potential to control the radiation characteristics such as sidelobe levels, position of the nulls, and the beamwidths in small arrays, which are useful for adaptively controlling the array performance in emerging wireless communication systems and radars.


2003 ◽  
Vol 36 (16) ◽  
pp. 97-102 ◽  
Author(s):  
Bernard H. Fleury ◽  
Xuefeng Yin ◽  
Patrik Jourdan ◽  
Andreas Stucki

2017 ◽  
Vol 14 (3) ◽  
pp. 301-312 ◽  
Author(s):  
Valentin Fedosov ◽  
Andrey Legin ◽  
Anna Lomakina

Trends in the modern world increasingly lead to the growing popularity of wireless technologies. This is possible due to the rapid development of mobile communications, the Internet gaining high popularity, using wireless networks at enterprises, offices, buildings, etc. It requires advanced network technologies with high throughput capacity to meet the needs of users. To date, a popular destination is the development of spatial signal processing techniques allowing to increase spatial bandwidth of communication channels. The most popular method is spatial coding MIMO to increase data transmission speed which is carried out due to several spatial streams emitted by several antennas. Another advantage of this technology is the bandwidth increase to be achieved without expanding the specified frequency range. Spatial coding methods are even more attractive due to a limited frequency resource. Currently, there is an increasing use of wireless communications (for example, WiFi and WiMAX) in information transmission networks. One of the main problems of evolving wireless systems is the need to increase bandwidth and improve the quality of service (reducing the error probability). Bandwidth can be increased by expanding the bandwidth or increasing the radiated power. Nevertheless, the application of these methods has some drawbacks, due to the requirements of biological protection and electromagnetic compatibility, the increase of power and the expansion of the frequency band is limited. This problem is especially relevant in mobile (cellular) communication systems and wireless networks operating in difficult signal propagation conditions. One of the most effective ways to solve this problem is to use adaptive antenna arrays with weakly correlated antenna elements. Communication systems using such antennas are called MIMO systems (Multiple Input Multiple Output multiple input - multiple outputs). At the moment, existing MIMO-idea implementations do not always noticeably accelerate traffic at short distances from the access point, but, they are very effective at long distances. The MIMO principle allows reducing the number of errors in radio data interchange (BER) without reducing the transmission rate under conditions of multiple signal re-reflections. The work aims at developing an adaptive space-time signal algorithm for a wireless data transmission system designed to improve the efficiency of this system, as well as to study the efficiency of the algorithm to minimizing the error bit probability and maximizing the channel capacity.


2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Md. Shahidul Alam ◽  
Norbahiah Misran ◽  
Baharudin Yatim ◽  
Mohammad Tariqul Islam

Electromagnetic band gap (EBG) technology has become a significant breakthrough in the radio frequency (RF) and microwave applications due to their unique band gap characteristics at certain frequency ranges. Since 1999, the EBG structures have been investigated for improving performances of numerous RF and microwave devices utilizing the surface wave suppression and the artificial magnetic conductor (AMC) properties of these special type metamaterial. Issues such as compactness, wide bandwidth with low attenuation level, tunability, and suitability with planar circuitry all play an important role in the design of EBG structures. Remarkable efforts have been undertaken for the development of EBG structures to be compatible with a wide range of wireless communication systems. This paper provides a comprehensive review on various EBG structures such as three-, two-, and one-dimensional (3D, 2D, and 1D) EBG, mushroom and uniplanar EBG, and their successive advancement. Considering the related fabrication complexities, implementation of vialess EBG is an attractive topic for microwave engineers. For microstrip antennas, EBG structures are used in diversified ways, which of course found to be effective except in some cases. The EBG structures are also successfully utilized in antenna arrays for reducing the mutual coupling between elements of the array. Current challenges and limitations of the typical microstrip antennas and different EBG structures are discussed in details with some possible suggestions. Hopefully, this survey will guide to increasing efforts towards the development of more compact, wideband, and high-efficient uniplanar EBG structures for performance enhancement of antenna and other microwave devices.


Sign in / Sign up

Export Citation Format

Share Document