scholarly journals Rancang Bangun OwnCloud Sebagai Cloud Storage di Kampus STMIK PPKIA Tarakanita Rahmawati

2020 ◽  
Vol 4 (2) ◽  
pp. 404
Author(s):  
Hadriansa Hadriansa ◽  
Denis Prayogi ◽  
Kandi Harianto

Media storage based on cloud computing is now widely used as a solution for exchanging data and information in an institution to support work. At STMIK PPKIA Tarakanita Rahmawati, cloud-based storage is very necessary because many data and information exchange activities are carried out digitally, both data exchange between lecturers, academic community, education staff and students. Utilization of ownCloud as an open source software to solve the problem of cloud computing-based data exchange is very appropriate because the website-based, desktop and mobile-based applications make it easier for users to access data.  Owncloud is similar to applications like Google Drive, Dropbox, it's just that all settings and data processing and user can be done independently so that it can adjust to the needs. The results of this research, Owncloud can be used well by lecturers to store data related to lectures and research, students to store lecture data centrally, the academic community in storing data related to academic activities. The design of owncloud is also still done intranet, so to access it must be connected to the network around the campus of STMIK PPKIA Tarakanita Rahmawati

2016 ◽  
Vol 11 (1) ◽  
pp. 72-80
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov

In article one of possible approaches to synthezis of group control of mobile robots which is based on use of cloud computing is considered. Distinctive feature of the offered techniques is adequate reflection of specifics of a scope and the robots of tasks solved by group in architecture of control-information systems, methods of the organization of information exchange, etc. The approach offered by authors allows to increase reliability and robustness of collectives of robots, to lower requirements to airborne computers when saving summary high performance in general.


2021 ◽  
Vol 28 (1) ◽  
pp. e100241
Author(s):  
Job Nyangena ◽  
Rohini Rajgopal ◽  
Elizabeth Adhiambo Ombech ◽  
Enock Oloo ◽  
Humphrey Luchetu ◽  
...  

BackgroundThe use of digital technology in healthcare promises to improve quality of care and reduce costs over time. This promise will be difficult to attain without interoperability: facilitating seamless health information exchange between the deployed digital health information systems (HIS).ObjectiveTo determine the maturity readiness of the interoperability capacity of Kenya’s HIS.MethodsWe used the HIS Interoperability Maturity Toolkit, developed by MEASURE Evaluation and the Health Data Collaborative’s Digital Health and Interoperability Working Group. The assessment was undertaken by eHealth stakeholder representatives primarily from the Ministry of Health’s Digital Health Technical Working Group. The toolkit focused on three major domains: leadership and governance, human resources and technology.ResultsMost domains are at the lowest two levels of maturity: nascent or emerging. At the nascent level, HIS activities happen by chance or represent isolated, ad hoc efforts. An emerging maturity level characterises a system with defined HIS processes and structures. However, such processes are not systematically documented and lack ongoing monitoring mechanisms.ConclusionNone of the domains had a maturity level greater than level 2 (emerging). The subdomains of governance structures for HIS, defined national enterprise architecture for HIS, defined technical standards for data exchange, nationwide communication network infrastructure, and capacity for operations and maintenance of hardware attained higher maturity levels. These findings are similar to those from interoperability maturity assessments done in Ghana and Uganda.


Author(s):  
Ute Riemann

Business processes are not only variable they are as well dynamic. A key benefit of Business Process Management (BPM) is the ability to adjust business processes accordingly in response to changing market requirements. In parallel to BPM, enterprise cloud computing technology has emerged to provide a more cost effective solution to businesses and services while making use of inexpensive computing solutions, which combines pervasive, internet, and virtualization technologies (). Despite the slow start, the business benefits of cloud computing are as such that the transition of BPM to the cloud is now underway. Cloud services refer to the operation of a virtualized, automated, and service-oriented IT landscape allowing the flexible provision and usage-based invoicing of resources, services, and applications via a network or the internet. The generic term “X-as-a-Service” summarize the business models delivering almost everything as a service. BPM in the cloud is often regarded as a SaaS application. More recently, BPM is being regarded as a PaaS as it facilitates the creation and deployment of applications, in this case business process solutions. The PaaS landscape is the least developed of the four cloud based software delivery models previously discussed. PaaS vendors, such as IBM, Oracle, and Microsoft delivered an application platform with managed cloud infrastructure services however, more recently the PaaS market has begun to evolve to include other middleware capabilities including process management. BPM PaaS is the delivery of BPM technology as a service via a cloud service provider. For the classification as a PaaS a BPM suite requires the following capabilities: the architecture should be multi-tenant, hosting should be off premise and it should offer elasticity and metering by use capabilities. When we refer to BPM in the cloud, what we are really referring to is a combination of BPM PaaS and BPaaS (Business Process as a Service). Business Process as a Service (BPaaS) is a set of pre-defined business processes that allows the execution of customized business processes in the cloud. BPaaS is a complete pre-integrated BPM platform hosted in the cloud and delivered as a service, for the development and execution of general-purpose business process application. Although such a service harbors an economic potential there are remaining questions: Can an individual and company-specific business process supported by a standardized cloud solution, or should we protect process creativity and competitive differentiation by allowing the company to design the processes individually and solely support basic data flows and structures? Does it make sense to take a software solution “out of the box” that handles both data and process in a cloud environment, or would this hinder the creativity of business (process) development leading to a lower quality of processes and consequently to a decrease in the competitive positioning of a company? How to manage the inherent compliance and security topic. Within a completely integrated business application system, all required security aspects can be implemented as a safeguarding with just enough money. Within the cloud, however, advanced standards and identity prove is required to monitor and measure information exchange across the federation. Thereby there seems to be no need for developing new protocols, but a standardized way to collect and evaluate the collected information.


2021 ◽  
Author(s):  
◽  
L. P. Bopape

With the advent of IoT, Device-to-Device (D2D) communications has afforded a new paradigm that reliably facilitates data exchange among devices in proximity without necessarily involving the base (core) network. It is geared towards the need to improve network performance where short-range communications is concerned, as well as supporting proximitybased services. However, the relentless growth in the number of network end-users as well as interconnected communication-capable devices, in the next-generation IoT-based 5G cellular networks has resulted in novel services and applications, most of which are security-sensitive. It is thus of paramount importance that security issues be addressed. A posing challenge is that the devices are mostly resource-constrained in both power and computing. As such, it is not practical to implement present day as well as traditional security frameworks and protocols under such a scenario, unless strides are taken towards the improvements of data throughput rates, higher bandwidth provisioning, lower round trip latencies, enhanced spectral efficiencies, and energy efficiency (leading to even lower power consumption, by the already constrained devices) in IoT 5G/LTE networks. Therefore, this work focused on exploring and designing schemes that enhance security and privacy among communicating parties. Otherwise, without reliable as well as robust privacy and security preservation measures in the network, most services and applications will be exposed to various forms of malicious attacks. With such a widened cyber-attack space, both privacy and security for end users can easily be compromised. The work herein addresses privacy for subscribers to the various available services and applications as well as security of the associated data. Ultimately, we propose a Fog-Cloud computing paradigm-assisted security framework that comprises two schemes. The aim is to implement a lightweight-based cartographic algorithm that ensures that communication overheads, round trip latencies, computational loads as well as energy consumption by the otherwise resource-constrained surveillance cameras deployed remotely, are kept minimal. Overall, by way of both analysis and simulation, we ascertain that a Fog-Cloud computing-based lightweight security-based scheme has the potential to greatly improve security and privacy preservation, as well as overall performance despite the resource-constrained nature of the devices.


2020 ◽  
Vol 9 (1) ◽  
pp. 1661-1666

The Internet has become the most important medium for information exchange and the core communication environment for business relations as well as for social interactions. The current internet architecture itself might become the limiting factor of Internet growth and deployment of new applications including 5G and future internet. Architectural limitations of internet include weak security, lack of efficient storage and caching, data distribution and traceability issues, lack of interoperability and so on. The proposed system overcomes these limitations by an alternate architecture for internet called NovaGenesis. This architecture integrates the concepts of Information Centric Networking (ICN), Service Oriented Architecture (SOA), network caching and name based routing. ICN evolve internet from a host-centric model to a content-centric model through efficient data exchange, storage and processing. SOA enables software-control/management of network devices based on service requirements. Network caching improves performance in terms of throughput, network traffic and retrieval delay. Name based routing is for discovering and delivering of data. The framework proposed increases the scalability and reliability of the delivery of IoT data for services.


Author(s):  
Alireza Pourshahid ◽  
Liam Peyton ◽  
Sepideh Ghanavati ◽  
Daniel Amyot ◽  
Pengfei Chen ◽  
...  

Validation should be done in the context of understanding how a business process is intended to contribute to the business strategies of an organization. Validation can take place along a variety of dimensions including legal compliance, financial cost, customer value, and service quality. A business process modeling tool cannot anticipate all the ways in which a business process might need to be validated. However, it can provide a framework for extending model elements to represent context for a business process. It can also support information exchange to facilitate validation with other tools and systems. This chapter demonstrates a model-based approach to validation using a hospital approval process for accessing patient data in a data warehouse. An extensible meta-model, a flexible data exchange layer, and linkage between business processes and enterprise context are shown to be the critical elements in model-based business process validation.


2016 ◽  
pp. 2096-2121
Author(s):  
Ute Riemann

Business processes are not only variable they are as well dynamic. A key benefit of Business Process Management (BPM) is the ability to adjust business processes accordingly in response to changing market requirements. In parallel to BPM, enterprise cloud computing technology has emerged to provide a more cost effective solution to businesses and services while making use of inexpensive computing solutions, which combines pervasive, internet, and virtualization technologies (). Despite the slow start, the business benefits of cloud computing are as such that the transition of BPM to the cloud is now underway. Cloud services refer to the operation of a virtualized, automated, and service-oriented IT landscape allowing the flexible provision and usage-based invoicing of resources, services, and applications via a network or the internet. The generic term “X-as-a-Service” summarize the business models delivering almost everything as a service. BPM in the cloud is often regarded as a SaaS application. More recently, BPM is being regarded as a PaaS as it facilitates the creation and deployment of applications, in this case business process solutions. The PaaS landscape is the least developed of the four cloud based software delivery models previously discussed. PaaS vendors, such as IBM, Oracle, and Microsoft delivered an application platform with managed cloud infrastructure services however, more recently the PaaS market has begun to evolve to include other middleware capabilities including process management. BPM PaaS is the delivery of BPM technology as a service via a cloud service provider. For the classification as a PaaS a BPM suite requires the following capabilities: the architecture should be multi-tenant, hosting should be off premise and it should offer elasticity and metering by use capabilities. When we refer to BPM in the cloud, what we are really referring to is a combination of BPM PaaS and BPaaS (Business Process as a Service). Business Process as a Service (BPaaS) is a set of pre-defined business processes that allows the execution of customized business processes in the cloud. BPaaS is a complete pre-integrated BPM platform hosted in the cloud and delivered as a service, for the development and execution of general-purpose business process application. Although such a service harbors an economic potential there are remaining questions: Can an individual and company-specific business process supported by a standardized cloud solution, or should we protect process creativity and competitive differentiation by allowing the company to design the processes individually and solely support basic data flows and structures? Does it make sense to take a software solution “out of the box” that handles both data and process in a cloud environment, or would this hinder the creativity of business (process) development leading to a lower quality of processes and consequently to a decrease in the competitive positioning of a company? How to manage the inherent compliance and security topic. Within a completely integrated business application system, all required security aspects can be implemented as a safeguarding with just enough money. Within the cloud, however, advanced standards and identity prove is required to monitor and measure information exchange across the federation. Thereby there seems to be no need for developing new protocols, but a standardized way to collect and evaluate the collected information.


2011 ◽  
Vol 3 (2) ◽  
pp. 43-78 ◽  
Author(s):  
M.M. Mahbubul Syeed ◽  
Timo Aaltonen ◽  
Imed Hammouda ◽  
Tarja Systä

Open Source Software (OSS) is currently a widely adopted approach to developing and distributing software. OSS code adoption requires an understanding of the structure of the code base. For a deeper understanding of the maintenance, bug fixing and development activities, the structure of the developer community also needs to be understood, especially the relations between the code and community structures. This, in turn, is essential for the development and maintenance of software containing OSS code. This paper proposes a method and support tool for exploring the relations of the code base and community structures of OSS projects. The method and proposed tool, Binoculars, rely on generic and reusable query operations, formal definitions of which are given in the paper. The authors demonstrate the applicability of Binoculars with two examples. The authors analyze a well-known and active open source project, FFMpeg, and the open source version of the IaaS cloud computing project Eucalyptus.


Sign in / Sign up

Export Citation Format

Share Document