scholarly journals Identification of leaf rust resistance genes in the new Russian varieties of common wheat

Author(s):  
E. I. Gultyaeva ◽  
E. L. Shaydayuk

Background. Wheat leaf rust caused by Puccinia triticina Erikss. is a significant wheat disease in all regions of the Russian Federation. The genetic diversity of the cultivated wheat varieties regarding the type of resistance and genes that control it ensures reliable protection of this crop against the pathogen. The aim of this work was to characterize the diversity of new Russian varieties of winter and spring common wheat for leaf rust resistance genes (Lr-genes).Materials and Methods. The research material was represented by 43 varieties of winter and 25 of spring wheat included in the State Register of Selection Achievements of the Russian Federation in 2018-2020.Results. Using molecular markers, 18 Lr genes were identified: Lr1, Lr3, Lr9, Lr10, Lr19, Lr20, Lr21, Lr24, Lr25, Lr26, Lr28, Lr29, Lr34, Lr35, Lr37, Lr41 (39), Lr47 and Lr66. A phytopathological test was used to clarify the results of molecular analysis. Ninety-three percent of the studied wheat varieties were found to contain Lr genes, either separately or in combinations. These were the highly and partially effective genes Lr24, Lr9, and Lr19, adult plant resistance genes Lr34 and Lr37, and ineffective genes Lr1, Lr3, Lr10, Lr20, and Lr26. The Lr24 gene has been identified for the first time in Russian varieties. The spring variety ‘Leader 80’, harboring this gene, is recommended for cultivation in the West Siberian and East Siberian regions. An effective combination of Lr9 + Lr26 genes, individually overcome by the pathogen, was determined in the spring cultivar ‘Silach’, highly resistant to leaf rust. The Lr9 gene was found in the winter variety ‘Gerda’, which is recommended for cultivation in the North Caucasus region. Previously, the varieties with Lr9 were not grown in the North Caucasus. An increase in the number of leaf rust resistant accessions protected by the effective adult plant resistance gene Lr37 is noted among wheat varieties undergoing regional adaptation testing. Many of the identified Lr genes (Lr19, Lr24, Lr26, Lr34, Lr37) are linked with effective Sr genes (Sr25, Sr24, Sr31, Sr57, and Sr38), which additionally ensures stable genetic protection of wheat against stem rust.Conclusions. The obtained information about representation of Lr genes in wheat varieties should be used in regional breeding programs. A timely replacement of genetically protected varieties allows stabilizing the populational composition of the phytopathogen and reducing the likelihood of epiphytotics.

Plant Disease ◽  
2021 ◽  
Author(s):  
Subhash Chander Bhardwaj ◽  
Subodh Kumar ◽  
Om Prakash Gangwar ◽  
Pramod Prasad ◽  
Prem Lal Kashyap ◽  
...  

Wheat is the second most cultivated cereal in the world and is equally important in India. Leaf (brown) rust, caused by Puccinia triticina, was most prevalent among the three rusts in all the wheat-growing areas of India, Bhutan, and Nepal during 2016 to 2019. Leaf rust samples from wheat crops in these countries were pathotyped using the wheat differential genotypes and binomial Indian system of nomenclature. To facilitate international communication, each pathotype identified was also tested on the North American differentials. A total of 33 pathotypes were identified from 1,086 samples, including 3 new pathotypes, 61R47 (162-5 = KHTDM) and 93R49 (49 = NHKTN) from India and 93R57 (20-1 = NHKTL) from Nepal. Two pathotypes, 121R60-1 (77-9/52 = MHTKL) and 121R63-1 (77-5 = THTTM), accounted for 79.46% of the population. Virulence on Lr19 was identified in 0.27% of the samples and from Nepal only. The proportion of pathotype 121R60-1 (77-9 = MHTKL) increased during these years to 57.55%. Virulence was not observed to Lr9, Lr24, Lr25, Lr28, Lr32, Lr39, Lr45, and Lr47 in the population of the Indian subcontinent. Eighteen polymorphic simple sequence repeat (SSR) primer pairs tested on the isolates amplified 48 alleles with an average of 2.66 alleles per primer pair. Based on SSR genotyping, these pathotypes could be grouped into two clades with further two subclades each. Many of the Lr genes present in Indian wheat germplasm (Lr1, Lr3a, Lr10, Lr11, Lr14a, Lr15, Lr16, Lr17, Lr20, Lr23, and Lr26) were ineffective to a majority of the pathotypes. Most of these varieties possessed a high degree of leaf rust resistance. The field resistance of wheat varieties could be attributed to the interaction of genes, unknown resistance, or adult plant resistance.


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1127-1133 ◽  
Author(s):  
L. M. Oelke ◽  
J. A. Kolmer

Leaf rust, caused by Puccinia triticina Eriks., is the most common disease of wheat (Triticum aestivum L.) in the United States and worldwide. The objective of this study was to characterize seedling and adult plant leaf rust resistance in hard red spring wheat cultivars grown in Minnesota, North Dakota, and South Dakota, and postulate the identity of the seedling leaf rust resistance genes in the cultivars. Twenty-six cultivars, near-isogenic lines of Thatcher wheat that differ for single leaf rust resistance genes, and three wheat cultivars with known leaf rust resistance genes, were tested with 11 different isolates of leaf rust collected from the United States and Canada. The leaf rust infection types produced on seedling plants of the cultivars in greenhouse tests were compared with the infection types produced by the same isolates on the Thatcher near-isogenic lines to postulate which seedling leaf rust resistance genes were present. Seedling leaf rust resistance genes Lr1, Lr2a, Lr10, Lr16, Lr21, and Lr24 were postulated to be present in spring wheat cultivars. Seedling genes Lr3, Lr14a, and Lr23 likely were present in some cultivars but could not be clearly identified in this study. Most of the cultivars had some level of adult plant leaf rust resistance, most likely due to Lr34. Cultivars that had seedling resistance genes Lr1, Lr2a, Lr10, or Lr16 had poor to intermediate levels of leaf rust resistance in field plots. Cultivars with combinations of seedling resistance genes Lr16 and Lr24 with additional adult plant resistance were highly resistant to leaf rust.


1969 ◽  
Vol 47 (2) ◽  
pp. 267-269 ◽  
Author(s):  
P. Bartos ◽  
P. L. Dyck ◽  
D. J. Samborski

Inheritance of adult-plant resistance to race 9 of leaf rust was investigated in the wheat varieties Thatcher and Marquis. Resistance was conferred by the same recessive gene in both varieties. The genetics of virulence on adult plants of Thatcher was studied in a F2 population of cultures from a cross between races 9 and 161. A single recessive gene conferred virulence on adult plants of Thatcher. This gene was inherited independently of the genes that condition virulence on host genes Lr1, Lr2, Lr3, and Lr11.


2007 ◽  
Vol 55 (2) ◽  
pp. 149-156 ◽  
Author(s):  
M. Gál ◽  
G. Vida ◽  
A. Uhrin ◽  
Z. Bedő ◽  
O. Veisz

The breeding and cultivation of resistant wheat varieties is an effective way of controlling leaf rust ( Puccinia triticina Eriks.). The use of molecular markers facilitates the incorporation of the major leaf rust resistance genes ( Lr genes) responsible for resistance into new varieties and the pyramiding of these genes. Marker-assisted selection was used to incorporate the Lr genes currently effective in Hungary ( Lr9 , Lr24 , Lr25 , Lr29 ) into winter wheat varieties. The Lr genes were identified using STS, SCAR and RAPD markers closely linked to them. Investigations were made on how these markers could be utilised in plant breeding, and near-isogenic lines resembling the recurrent variety but each containing a different Lr gene were developed to form the initial stock for the pyramiding of resistance genes. The results indicate that the marker-assisted selection technique elaborated for resistance genes Lr24 , Lr25 and Lr29 can be applied simply and effectively in wheat breeding, while the detection of the Lr9 marker is uncertain.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Caixia Lan ◽  
Zhikang Li ◽  
Sybil A. Herrera-Foessel ◽  
Julio Huerta-Espino ◽  
Bhoja R. Basnet ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1378
Author(s):  
Mohamed A. M. Atia ◽  
Eman A. El-Khateeb ◽  
Reem M. Abd El-Maksoud ◽  
Mohamed A. Abou-Zeid ◽  
Arwa Salah ◽  
...  

Wheat is a major nutritional cereal crop that has economic and strategic value worldwide. The sustainability of this extraordinary crop is facing critical challenges globally, particularly leaf rust disease, which causes endless problems for wheat farmers and countries and negatively affects humanity’s food security. Developing effective marker-assisted selection programs for leaf rust resistance in wheat mainly depends on the availability of deep mining of resistance genes within the germplasm collections. This is the first study that evaluated the leaf rust resistance of 50 Egyptian wheat varieties at the adult plant stage for two successive seasons and identified the absence/presence of 28 leaf rust resistance (Lr) genes within the studied wheat collection. The field evaluation results indicated that most of these varieties demonstrated high to moderate leaf rust resistance levels except Gemmeiza 1, Gemmeiza 9, Giza162, Giza 163, Giza 164, Giza 165, Sids 1, Sids 2, Sids 3, Sakha 62, Sakha 69, Sohag 3 and Bany Swif 4, which showed fast rusting behavior. On the other hand, out of these 28 Lr genes tested against the wheat collection, 21 Lr genes were successfully identified. Out of 15 Lr genes reported conferring the adult plant resistant or slow rusting behavior in wheat, only five genes (Lr13, Lr22a, Lr34, Lr37, and Lr67) were detected within the Egyptian collection. Remarkedly, the genes Lr13, Lr19, Lr20, Lr22a, Lr28, Lr29, Lr32, Lr34, Lr36, Lr47, and Lr60, were found to be the most predominant Lr genes across the 50 Egyptian wheat varieties. The molecular phylogeny results also inferred the same classification of field evaluation, through grouping genotypes characterized by high to moderate leaf rust resistance in one cluster while being highly susceptible in a separate cluster, with few exceptions.


2008 ◽  
Vol 117 (3) ◽  
pp. 307-312 ◽  
Author(s):  
U. K. Bansal ◽  
M. J. Hayden ◽  
B. P. Venkata ◽  
R. Khanna ◽  
R. G. Saini ◽  
...  

Plant Disease ◽  
2001 ◽  
Vol 85 (2) ◽  
pp. 155-158 ◽  
Author(s):  
J. A. Kolmer

In 1998, leaf rust of wheat (Triticum aestivum), caused by Puccinia triticina, was widespread throughout the prairies of western Canada. Warm summer temperatures with frequent dew periods favored spread of the disease in wheat fields in Manitoba and Saskatchewan. The Canada Prairie Spring wheat cultivars (AC Vista, AC Foremost, AC Crystal) were susceptible to leaf rust, while the bread wheat cultivars with leaf rust resistance genes Lr16 and Lr13 or Lr34 (AC Majestic, AC Domain, AC Barrie) had high to moderate levels of leaf rust infections. Bread wheat cultivars AC Cora, AC Minto, Pasqua, and McKenzie had trace to low levels of leaf rust infection. Thirty-four virulence phenotypes of P. triticina were identified on 16 Thatcher lines, which are near-isogenic for leaf rust resistance genes. Phenotypes with virulence to Lr16 increased to 25% of isolates in Manitoba and Saskatchewan in 1998. Forty-three isolates were also tested for virulence to plants with the adult plant resistance genes Lr12, Lr13, Lr34, and Lr13,34. Most isolates had virulence to Lr12 and Lr13. All isolates had lower infection type on adult plants with Lr34 compared with Thatcher.


2009 ◽  
Vol 35 (5) ◽  
pp. 316-319 ◽  
Author(s):  
E. I. Gul’tyaeva ◽  
I. A. Kanyuka ◽  
N. V. Alpat’eva ◽  
O. A. Baranova ◽  
A. P. Dmitriev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document