scholarly journals Relationship between parameters of public parks and their surroundings and the richness, diversity and species composition of vascular herbaceous plants on the example of Krakow in Central Europe

2021 ◽  
Vol 94 ◽  
pp. 1-16
Author(s):  
Łukasz Moszkowicz ◽  
Izabela Krzeptowska-Moszkowicz ◽  
Karolina Porada

Greenery is a natural value in urban space. To maintain the richness and diversity of greenery, it is necessary to understand the factors and mechanisms that influence vegetation. The purpose of this paper was to determine the impact of selected features of public parks and factors on the richness and diversity of herbaceous plants. In Krakow public parks, this richness and diversity is greater in parks with a larger area and habitat heterogeneity, the presence of migration corridors, and natural elements. Full stand coverage negatively affects diversity. Biologically inactive surface affects richness and diversity as well as a number of different groups of plant species. The presence of rare and non-synanthropic species is related to the park’s surface, natural elements, and its heterogeneity.

2018 ◽  
Vol 10 (9) ◽  
pp. 3153
Author(s):  
Ditmar Kurtz ◽  
Marcus Giese ◽  
Folkard Asch ◽  
Saskia Windisch ◽  
María Goldfarb

High impact grazing (HIG) was proposed as a management option to reduce standing dead biomass in Northern Argentinean (Chaco) rangelands. However, the effects of HIG on grassland diversity and shifts in plant functional groups are largely unknown but essential to assess the sustainability of the impact. During a two-year grazing experiment, HIG was applied every month to analyze the seasonal effects on plant species composition and plant functional groups. The results indicate that irrespective of the season in which HIG was applied, the diversity parameters were not negatively affected. Species richness, the Shannon–Wiener diversity index and the Shannon’s equitability index did not differ from the control site within a 12-month period after HIG. While plant functional groups of dicotyledonous and annual species could not benefit from the HIG disturbance, C3-, C4-monocotyledonous and perennials increased their absolute and relative green cover. Our results suggest that HIG, if not applied in shorter frequencies than a year, neither alters diversity nor shifts the plant species composition of the grassland plant community, but instead it promotes previously established rather competitive species. HIG could therefore contribute as an alternative management practice to the sustainable land use intensification of the “Gran Chaco” grassland ecosystem and even counteract the encroachment of “low value” species.


2012 ◽  
Vol 39 (2) ◽  
pp. 123 ◽  
Author(s):  
Rowan W. Smith ◽  
Mick Statham ◽  
Tony W. Norton ◽  
Richard P. Rawnsley ◽  
Helen L. Statham ◽  
...  

Context Management of grazing wildlife on private land in Tasmania is a contentious issue for landowners, animal-welfare groups and the Tasmanian Government. Wildlife species known to graze pasture include Tasmanian pademelon (Thylogale billardierii), Bennett’s wallaby (Macropus rufogriseus rufogriseus), forester kangaroo (Macropus giganteus), brushtail possum (Trichosurus vulpecula) and fallow deer (Dama dama). Understanding the spatio-temporal patterns of wildlife grazing is important when considering wildlife-control options to mitigate pasture loss; however, limited research has been undertaken. Aims To quantify the impact of wildlife grazing on pasture production and to assess the spatial and temporal pasture biomass loss from an established pasture; to investigate the effect of protecting pastures from wildlife grazing on species composition of an existing perennial pasture; to determine whether wildlife grazing contributes to a decline in the composition of improved pasture species over time and an increase in-ground cover of less desirable grasses and broadleaf weeds; and to examine whether protecting pastures from wildlife grazing could increase ground cover. Methods Pasture biomass loss to wildlife grazing was determined by a paired exclusion-cage method over a 26-month period from February 2008 to April 2010. A quantitative pasture model was used to simulate pasture growth at the study site. Changes in the botanical composition of the sward in response to wildlife grazing were determined by hand-separation, drying and weighing of harvested material, and also by visual estimation of the ground cover of individual plant species. A wildlife faecal-pellet survey was used to develop an index of wildlife feeding activity. Key results Pasture loss to wildlife grazing varied spatially and temporally. Pasture loss decreased with increasing distance from the edge of cover vegetation. The proportion of pasture lost increased during periods of slow pasture growth. Visual estimates of ground cover showed that grazing by wildlife resulted in an increase in bare ground in unprotected swards, whereas protection from grazing resulted in an increase in production of perennial and annual species, as determined by hand-separation of harvested material, and a decrease in bare ground as determined by visual estimate. Faecal-pellet surveys were found to be strongly correlated with pasture biomass losses. Conclusions The proportion of pasture loss to wildlife grazing was found to be influenced by distance from native vegetation and also by pasture availability, which was seasonal. Wildlife can alter the composition of pastures by reducing the ground cover and yield of improved grasses. Continual grazing of pastures by wildlife in addition to rotational sheep grazing may increase the amount of bare ground. Implications Wildlife-control methods need to be carefully chosen if the intended benefits of alleviating pasture biomass losses are to be achieved. Quantifying the loss of pasture is important because it enables the extent and significance of losses to be determined and may inform decisions about the most appropriate wildlife control measures to adopt. Controlling wildlife during periods of slow pasture growth may be important in preventing damage and yield loss of plant species actively growing during these times. Failure to control wildlife may result in a decrease in the composition of desirable plant species.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5413 ◽  
Author(s):  
Piotr Skórka ◽  
Magdalena Lenda ◽  
Dawid Moroń

Roads may have an important negative effect on animal dispersal rate and mortality and thus the functioning of local populations. However, road verges may be surrogate habitats for invertebrates. This creates a conservation dilemma around the impact of roads on invertebrates. Further, the effect of roads on invertebrates is much less understood than that on vertebrates. We studied the effect of roads on butterflies by surveying abundance, species richness and composition, and mortality in ten grassland patches along high-traffic roads (∼50–100 vehicles per hour) and ten reference grassland patches next to unpaved roads with very little traffic (<1 vehicle per day) in southern Poland. Five 200-m transects parallel to the road were established in every grassland patch: at a road verge, 25 m from the verge, in the patch interior, and 25 m from the boundary between the grassland and field and at the grassland-arable field boundary. Moreover, one 200-m transect located on a road was established to collect roadkilled butterflies. The butterfly species richness but not abundance was slightly higher in grassland patches adjacent to roads than in reference grassland patches. Butterfly species composition in grasslands adjacent to roads differed from that in the reference patches. Proximity of a road increased variability in butterfly abundances within grassland patches. Grassland patches bordering roads had higher butterfly abundance and variation in species composition in some parts of the grassland patch than in other parts. These effects were not found in reference grassland patches, where butterfly species and abundance were more homogenously distributed in a patch. Plant species composition did not explain butterfly species. However, variance partitioning revealed that the presence of a road explained the highest proportion of variation in butterfly species composition, followed by plant species richness and abundance in grassland patches. Road mortality was low, and the number of roadkilled butterflies was less than 5% of that of all live butterflies. Nevertheless, the number and species composition of roadkilled butterflies were well explained by the butterfly communities living in road verges but not by total butterfly community structure in grassland patches. This study is the first to show that butterfly assemblages are altered by roads. These results indicate that: (1) grassland patches located near roads are at least as good habitats for butterflies as reference grassland patches are, (2) roads create a gradient of local environmental conditions that increases variation in the abundance of certain species and perhaps increases total species richness in grassland patches located along roads, and (3) the impact of roads on butterflies is at least partially independent of the effect of plants on butterflies. Furthermore, (4) the direct impact of road mortality is probably spatially limited to butterflies living in close proximity to roads.


2014 ◽  
Vol 113 (11) ◽  
pp. 4123-4131 ◽  
Author(s):  
Friederike Knapp-Lawitzke ◽  
Frank Küchenmeister ◽  
Kai Küchenmeister ◽  
Georg von Samson-Himmelstjerna ◽  
Janina Demeler

2012 ◽  
Vol 92 (1) ◽  
pp. 55-65 ◽  
Author(s):  
E. W. Bork ◽  
L. J. Blonski

Bork, E. W. and Blonski, L. J. 2012. Short-term native grassland compositional responses following liquid hog manure application. Can. J. Plant Sci. 92: 55–65. Intensive livestock operations (ILOs) are becoming more common in remote regions of the Canadian prairies in an effort to reduce conflict with other land uses. This has led to ILOs situated where the typical sink for manure application, cultivated land, is not available, leading to growing interest in using native grasslands for manure disposal. Significant opposition exists to this practice, in part due to limited information available on the impact of manure application to native grassland diversity and species composition. We examined plant species composition changes over two growing seasons following varying rates (∼9.5, 19, 38, 75 and 150 kg ha−1 available N), methods (surface broadcast vs. coulter injected) and timing (fall vs. spring) of one-time liquid hog manure (LHM) application. Our results revealed divergent responses between study sites, with metrics of plant diversity declining in mixed prairie but increasing in fescue grassland with increases in manure application rate. Both communities also demonstrated minor changes in plant species composition, primarily in response to LHM rate and manure application method. Responsive plant species included a mix of native grasses and dicots, some of which may be regarded as undesirable (e.g., Artemisia frigida): however, most vegetation responses were temporary and disappeared by the second year. Although invasion of non-native plant species was not observed, suggesting these communities are tolerant of LHM application, changes in the reproductive effort of dominant grasses (negative in Hesperostipa curtiseta; positive in Pascopyrum smithii and Festuca hallii) suggest LHM application could alter long-term grassland composition. Thus, despite exhibiting resilience to one-time LHM application, future use of native grasslands for manure disposal should be done cautiously.


2021 ◽  
Author(s):  
Gelareh Valadi ◽  
Javad Eshaghi Rad ◽  
Yahia Khodakarami ◽  
Mostafa Nemati Peykani ◽  
Karen A. Harper

Abstract Aims Forest edges have been well studied in temperate and tropical forests, but less so in open canopy forests. We investigated edge influence on plant species diversity and soil properties in sparse oak forest fragments. Methods Data were collected along three transects from the edge to the interior of three small (under 10 ha) and three large (over 10 ha) oak forest fragments in Kermanshah province, Iran. We measured herbaceous plants (&lt; 0.5 m in height) and soil attributes at 0 (forest edge), 25, 50, 100 and 150 m. We quantified species diversity using the Shannon index, used rarefaction to compare species richness between two different sizes of fragments and applied non-metric multidimensional scaling ordination to investigate the variation in species composition. We estimated the distance of edge influence using randomization tests. Generalized linear mixed models with post-hoc Tukey's HSD tests were used to assess the effects of distance from edge and fragment size on diversity and soil properties. Important findings We found greater species richness, diversity and evenness at the edge of both small and large fragments, and lower nitrogen and organic carbon at the edge compared to the interior of large fragments, with most changes within 50 m of the edge. Species composition, organic carbon and total nitrogen were significantly different between small and large fragments. Our findings of significant edge influence on herbaceous plants and soil properties in these sparse forests provide a significant contribution to the literature on edges, especially in relation to herbaceous plants.


2019 ◽  
Vol 29 (1) ◽  
pp. 52-64
Author(s):  
Masatoshi Takeuchi ◽  
Teruaki Irie

To understand how farmlands help maintain biodiversity, we investigated the relationship between habitat heterogeneity and Orthoptera community composition on multiple spatial scales. First, we determined the impact of 12 environmental variables on the Orthoptera community diversity by sampling 37 quadrats in uncultivated fields over a broad spatial scale. Canonical correspondence analysis (CCA) demonstrated that environmental parameters influenced species composition. The first two canonical axes were associated with forest cover, grass (including harvested dried grass in some cases), bare or paddy fields, and plants with tall stems. Secondly, we conducted a local-scale survey of Orthoptera assemblages in an operational farm unit consisting of paddy fields, fallow fields, marginal grass fields, and secondary forests. Eleven Orthoptera species (46%) were found exclusively on specific vegetation types. Thirdly, we carried out a habitat-scale survey to elucidate the correspondence between consecutive spatial changes in vegetation and Orthoptera community composition in a paddy field and surrounding marginal fields. Even within narrower ranges, the compositional habitat heterogeneity induced changes in the dominant Orthoptera species composition. These results indicate that a high degree of habitat segregation occurs among Orthoptera species in field margins and in uncultivated fields, and that farmland management significantly affects spatial distribution of Orthoptera.


Sign in / Sign up

Export Citation Format

Share Document