The penetration and ricochet of ogive-nosed rigid projectiles obliquely impacting metallic targets

2021 ◽  
pp. 204141962110377
Author(s):  
Yaniv Vayig ◽  
Zvi Rosenberg

A large number of 3D numerical simulations were performed in order to follow the trajectory changes of rigid CRH3 ogive-nosed projectiles, impacting semi-infinite metallic targets at various obliquities. These trajectory changes are shown to be related to the threshold ricochet angles of the projectile/target pairs. These threshold angles are the impact obliquities where the projectiles end up moving in a path parallel to the target’s face. They were found to depend on a non-dimensional entity which is equal to the ratio between the target’s resistance to penetration and the dynamic pressure exerted by the projectile upon impact. Good agreement was obtained by comparing simulation results for these trajectory changes with experimental data from several published works. In addition, numerically-based relations were derived for the penetration depths of these ogive-nosed projectiles at oblique impacts, which are shown to agree with the simulation results.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4733
Author(s):  
Ningjing Jiang ◽  
Shufan Wu ◽  
Yile Hu ◽  
Zhongcheng Mu ◽  
Xiaofeng Wu ◽  
...  

Currently, it appears that there is a lack of understanding related to the role of SSF, in the two-phase behavior of the deceleration history, which is an issue discussed recently in the impact dynamics field. This paper analytically and numerically focuses on the effect of SSF on the projectile deceleration characteristic of concrete-like targets. Firstly, the penetration process according to the two-phase feature of the projectile deceleration is revised, where analytical results indicate that the SSF has a phased feature corresponding to the two-phase behavior of the deceleration history. Furthermore, a series of numerical simulations are conducted to understand the role of SSF more clearly. Simulation results show a similar conclusion to the analyses of the two-phase penetration process; at the range below a certain critical striking velocity, adding friction can reproduce the experimental data; when exceeding the critical striking velocity, the simulated results without considering friction are closest to the experimental data. Hence, it could be gained that the role exchange between the SSF and the dynamic term contributes to the two-phase penetration behavior for concrete-like materials. This indicates that the sensitivity of SSF to the penetration process is one of the factors driving the two-phase feature.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xichuan Liu ◽  
Taichang Gao ◽  
Yuntao Hu ◽  
Xiaojian Shu

In order to improve the measurement of precipitation microphysical characteristics sensor (PMCS), the sampling process of raindrops by PMCS based on a particle-by-particle Monte-Carlo model was simulated to discuss the effect of different bin sizes on DSD measurement, and the optimum sampling bin sizes for PMCS were proposed based on the simulation results. The simulation results of five sampling schemes of bin sizes in four rain-rate categories show that the raw capture DSD has a significant fluctuation variation influenced by the capture probability, whereas the appropriate sampling bin size and width can reduce the impact of variation of raindrop number on DSD shape. A field measurement of a PMCS, an OTT PARSIVEL disdrometer, and a tipping bucket rain Gauge shows that the rain-rate and rainfall accumulations have good consistencies between PMCS, OTT, and Gauge; the DSD obtained by PMCS and OTT has a good agreement; the probability of N0, μ, and Λ shows that there is a good agreement between the Gamma parameters of PMCS and OTT; the fitted μ-Λ and Z-R relationship measured by PMCS is close to that measured by OTT, which validates the performance of PMCS on rain-rate, rainfall accumulation, and DSD related parameters.


Geophysics ◽  
2021 ◽  
pp. 1-69
Author(s):  
Artur Posenato Garcia ◽  
Zoya Heidari

The dielectric response of rocks results from electric double layer (EDL), Maxwell-Wagner (MW), and dipolar polarizations. The EDL polarization is a function of solid-fluid interfaces, pore water, and pore geometry. MW and dipolar polarizations are functions of charge accumulation at the interface between materials with contrasting impedances and the volumetric concentration of its constituents, respectively. However, conventional interpretation of dielectric measurements only accounts for volumetric concentrations of rock components and their permittivities, not interfacial properties such as wettability. Numerical simulations of dielectric response of rocks provides an ideal framework to quantify the impact of wettability and water saturation ( Sw) on electric polarization mechanisms. Therefore, in this paper we introduce a numerical simulation method to compute pore-scale dielectric dispersion effects in the interval from 100 Hz to 1 GHz including impacts of pore structure, Sw, and wettability on permittivity measurements. We solve the quasi-electrostatic Maxwell's equations in three-dimensional (3D) pore-scale rock images in the frequency domain using the finite volume method. Then, we verify simulation results for a spherical material by comparing with the corresponding analytical solution. Additionally, we introduce a technique to incorporate α-polarization to the simulation and we verify it by comparing pore-scale simulation results to experimental measurements on a Berea sandstone sample. Finally, we quantify the impact of Sw and wettability on broadband dielectric permittivity measurements through pore-scale numerical simulations. The numerical simulation results show that mixed-wet rocks are more sensitive than water-wet rocks to changes in Sw at sub-MHz frequencies. Furthermore, permittivity and conductivity of mixed-wet rocks have weaker and stronger dispersive behaviors, respectively, when compared to water-wet rocks. Finally, numerical simulations indicate that conductivity of mixed-wet rocks can vary by three orders of magnitude from 100 Hz to 1 GHz. Therefore, Archie’s equation calibrated at the wrong frequency could lead to water saturation errors of 73%.


Author(s):  
Dilip Prasad

Windmilling requirements for aircraft engines often define propulsion and airframe design parameters. The present study is focused is on two key quantities of interest during windmill operation: fan rotational speed and stage losses. A model for the rotor exit flow is developed, that serves to bring out a similarity parameter for the fan rotational speed. Furthermore, the model shows that the spanwise flow profiles are independent of the throughflow, being determined solely by the configuration geometry. Interrogation of previous numerical simulations verifies the self-similar nature of the flow. The analysis also demonstrates that the vane inlet dynamic pressure is the appropriate scale for the stagnation pressure loss across the rotor and splitter. Examination of the simulation results for the stator reveals that the flow blockage resulting from the severely negative incidence that occurs at windmill remains constant across a wide range of mass flow rates. For a given throughflow rate, the velocity scale is then shown to be that associated with the unblocked vane exit area, leading naturally to the definition of a dynamic pressure scale for the stator stagnation pressure loss. The proposed scaling procedures for the component losses are applied to the flow configuration of Prasad and Lord (2010). Comparison of simulation results for the rotor-splitter and stator losses determined using these procedures indicates very good agreement. Analogous to the loss scaling, a procedure based on the fan speed similarity parameter is developed to determine the windmill rotational speed and is also found to be in good agreement with engine data. Thus, despite their simplicity, the methods developed here possess sufficient fidelity to be employed in design prediction models for aircraft propulsion systems.


2016 ◽  
Vol 10 (11) ◽  
pp. 203
Author(s):  
Mohd Zaid Othman ◽  
Qasim H. Shah ◽  
Muhammad Akram Muhammad Khan ◽  
Tan Kean Sheng ◽  
M. A. Yahaya ◽  
...  

A series of numerical simulations utilizing LS-DYNA was performed to determine the mid-point deformations of V-shaped plates due to blast loading. The numerical simulation results were then compared with experimental results from published literature. The V-shaped plate is made of DOMEX 700 and is used underneath an armour personal carrier vehicle as an anti-tank mine to mitigate the effects of explosion from landmines in a battlefield. The performed numerical simulations of blast loading of V-shaped plates consisted of various angles i.e. 60°, 90°, 120°, 150° and 180°; variable mass of explosives located at the central mid-point of the V-shaped vertex with various stand-off distances. It could be seen that the numerical simulations produced good agreement with the experimental results where the average difference was about 26.6%.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Dilip Prasad

Windmilling requirements for aircraft engines often define propulsion and airframe design parameters. The present study is focused on two key quantities of interest during windmill operation: fan rotational speed and stage losses. A model for the rotor exit flow is developed that serves to bring out a similarity parameter for the fan rotational speed. Furthermore, the model shows that the spanwise flow profiles are independent of the throughflow, being determined solely by the configuration geometry. Interrogation of previous numerical simulations verifies the self-similar nature of the flow. The analysis also demonstrates that the vane inlet dynamic pressure is the appropriate scale for the stagnation pressure loss across the rotor and splitter. Examination of the simulation results for the stator reveals that the flow blockage resulting from the severely negative incidence that occurs at windmill remains constant across a wide range of mass flow rates. For a given throughflow rate, the velocity scale is then shown to be that associated with the unblocked vane exit area, leading naturally to the definition of a dynamic pressure scale for the stator stagnation pressure loss. The proposed scaling procedures for the component losses are applied to the flow configuration of Prasad and Lord (2010). Comparison of simulation results for the rotor-splitter and stator losses determined using these procedures indicates very good agreement. Analogous to the loss scaling, a procedure based on the fan speed similarity parameter is developed to determine the windmill rotational speed and is also found to be in good agreement with engine data. Thus, despite their simplicity, the methods developed here possess sufficient fidelity to be employed in design prediction models for aircraft propulsion systems.


2021 ◽  
Vol 16 (12) ◽  
pp. P12042
Author(s):  
A.A. Savchenko ◽  
W. Wagner

Abstract We present a new C++ module for simulation of channeling radiation to be implemented in Geant4 as a discrete physical process. The module allows simulation of channeling radiation from relativistic electrons and positrons with energies above 100 MeV for various types of single crystals. In this paper, we simulate planar channeling radiation applying the classical approach in the dipole approximation as a first attempt not yet considering other contributory processes. Simulation results are proved to be in a rather good agreement with experimental data.


1993 ◽  
Vol 256 ◽  
pp. 615-646 ◽  
Author(s):  
Paolo Orlandi ◽  
Roberto Verzicco

Accurate numerical simulations of vortex rings impinging on flat boundaries revealed the same features observed in experiments. The results for the impact with a free-slip wall compared very well with previous numerical simulations that used spectral methods, and were also in qualitative agreement with experiments. The present simulation is mainly devoted to studying the more realistic case of rings interacting with a no-slip wall, experimentally studied by Walker et al. (1987). All the Reynolds numbers studied showed a very good agreement between experiments and simulations, and, at Rev > 1000 the ejection of a new ring from the wall was seen. Axisymmetric simulations demonstrated that vortex pairing is the physical mechanism producing the ejection of the new ring. Three-dimensional simulations were also performed to investigate the effects of azimuthal instabilities. These simulations have confirmed that high-wavenumber instabilities originate in the compression phase of the secondary ring within the primary one. The large instability of the secondary ring has been explained by analysis of the rate-of-strain tensor and vorticity alignment. The differences between passive scalars and the vorticity field have been also investigated.


2012 ◽  
Vol 26 (20) ◽  
pp. 1250117 ◽  
Author(s):  
L. T. VINH ◽  
N. V. HUY ◽  
P. K. HUNG

Molecular dynamics simulation is carried out for liquid SiO 2 at pressure ranged from zero to 30 GPa and by using BKS, Born–Mayer type and Morse–Stretch potentials. The constructed models reproduce well the experimental data in terms of mean coordination number, bond angle and pair radial distribution function. Furthermore, the density of all samples can be expressed by a linear function of fractions SiO x. It is found that the topology of units SiO x and linkages OSi y is unchanged upon compression although the liquid undergoes substantial change in its network structure. Consequently, the partial bond angle distribution for SiO x and OSi y is identical for all samples constructed by the same potential. This result allows to establishing a simple expression between total bond angle distribution (BAD) and fraction of SiO x and OSi y. The simulation shows a good agreement between the calculation and simulation results for both total O–Si–O and Si–O–Si BADs. This supports a technique to estimate amount of units SiO x and linkages OSi y on base of total Si–O–Si and O–Si–O BADs measured experimentally.


2012 ◽  
Vol 608-609 ◽  
pp. 1375-1382
Author(s):  
Rui Zhang ◽  
Qin Hui Wang ◽  
Zhong Yang Luo ◽  
Meng Xiang Fang

As the first step in coal combustion and gasification, coal devolatilization has significant effect on reaction process. Previous coal devolatilization models have some disadvantages, such as poor flexibility, model complexity, and requirement of characterization parameters. Recently, Sommariva et al. have proposed a multi-step kinetic model of coal devolatilization. This model avoids the disadvantages mentioned above and can predict elemental composition of tar and char. In this paper, the mechanism of this model has been revised for simple application to Chemkin. Revision method is that some reactions are split into more reactions by using one pseudo-intermediate-product to replace several final products. Simulation results show that calculation results from revised mechanism compare quite well with that from original mechanism and have good agreement with experimental data. The revised mechanism is accurate and can be applied to Chemkin very easily, which gives it wide application to simulation of coal pyrolysis, gasification and combustion.


Sign in / Sign up

Export Citation Format

Share Document